A study is reported on modeling a laminar viscoelastic wake flow in intermediate and far regions behind a cylinder by the matched asymptotic expansion method. With the Oldroyd-B model chosen as the constitutive model, a globally valid, composite, reduced-order solution is constructed up to the third order. When viscoelasticity is disabled in the model, the resultant solution to the Newtonian flow can be favorably compared with previous experimental, analytical, and numerical investigations. Results show that the elastic effect begins to surface at the third order in our expansion scheme. For the flow field, the model predicts that the viscoelasticity has a positive effect on the growth of the longitudinal velocity and that the viscosity ratio has a negative effect. As the inertial effect increases, the longitudinal velocity increases. The elastic effects exerting on the vorticity distribution in the wake flow are also predicted by the theoretical model. For the conformation tensor field, the model dictates that a larger elastic effect leads to a greater extension of the polymer molecules, but predicts no influence of the viscosity ratio on the polymer extension because the solutions are only expanded till the third order. The reduced-order solutions establish a theoretical guidance for the complex viscoelastic wake flow, which is beneficial for the investigation of the drag reduction in the viscoelastic wake flow past a bluff body.

1.
S.
De
,
S.
Das
,
J. A. M.
Kuipers
,
E. A. J. F.
Peters
, and
J. T.
Padding
, “
A coupled finite volume immersed boundary method for simulating 3D viscoelastic flows in complex geometries
,”
J. Non-Newtonian Fluid Mech.
232
,
67
76
(
2016
).
2.
S.
De
,
J. A. M.
Kuipers
,
E. A. J. F.
Peters
, and
J. T.
Padding
, “
Viscoelastic flow past mono- and bidisperse random arrays of cylinders: Flow resistance, topology and normal stress distribution
,”
Soft Matter
13
,
9138
9146
(
2017
).
3.
E. J.
Hemingway
,
A.
Clarke
,
J. R. A.
Pearson
, and
S. M.
Fielding
, “
Thickening of viscoelastic flow in a model porous medium
,”
J. Non-Newtonian Fluid Mech.
251
,
56
68
(
2018
).
4.
O.
Manero
and
B.
Mena
, “
On the slow flow of viscoelastic liquids past a circular cylinder
,”
J. Non-Newtonian Fluid Mech.
9
,
379
387
(
1981
).
5.
G. H.
McKinley
,
R. C.
Armstrong
, and
R. A.
Brown
, “
The wake instability in viscoelastic flow past confined circular cylinders
,”
Philos. Trans. R. Soc., A
344
,
265
304
(
1993
).
6.
S.
Sen
,
S.
Mittal
, and
G.
Biswas
, “
Steady separated flow past a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
620
,
89
119
(
2009
).
7.
J. S.
Ultman
and
M. M.
Denn
, “
Slow viscoelastic flow past submerged objects
,”
Chem. Eng. J.
2
,
81
89
(
1971
).
8.
B.
Mena
and
B.
Caswell
, “
Slow flow of an elastic-viscous fluid past an immersed body
,”
Chem. Eng. J.
8
,
125
134
(
1974
).
9.
M.
Renardy
, “
Asymptotic structure of the stress field in flow past a cylinder at high Weissenberg number
,”
J. Non-Newtonian Fluid Mech.
90
,
13
23
(
2000
).
10.
M.
Renardy
, “
Viscoelastic stagnation point flow in a wake
,”
J. Non-Newtonian Fluid Mech.
138
,
206
208
(
2006
).
11.
J. M.
Broadbent
and
B.
Mena
, “
Slow flow of an elastic-viscous fluid past cylinders and spheres
,”
Chem. Eng. J.
8
,
11
19
(
1974
).
12.
P.
Townsend
, “
A numerical simulation of Newtonian and visco-elastic flow past stationary and rotating cylinders
,”
J. Non-Newtonian Fluid Mech.
6
,
219
243
(
1980
).
13.
M. D.
Chilcott
and
J. M.
Rallison
, “
Creeping flow of dilute polymer solutions past cylinders and spheres
,”
J. Non-Newtonian Fluid Mech.
29
,
381
432
(
1988
).
14.
A. W.
Liu
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: Comparisons of predictions for microstructure and flow fields
,”
J. Non-Newtonian Fluid Mech.
77
,
153
190
(
1998
).
15.
N.
Phan-Thien
and
H.
Dou
, “
Viscoelastic flow past a cylinder: Drag coefficient
,”
Comput. Methods Appl. Mech. Eng.
180
,
243
266
(
1999
).
16.
E. S. G.
Shaqfeh
, “
Purely elastic instabilities in viscometric flows
,”
Annu. Rev. Fluid Mech.
28
,
129
185
(
1996
).
17.
D. F.
James
and
A. J.
Acosta
, “
The laminar flow of dilute polymer solutions around circular cylinders
,”
J. Fluid Mech.
42
,
269
288
(
1970
).
18.
A.
Koniuta
,
P. M.
Adler
, and
J. M.
Piau
, “
Flow of dilute polymer solutions around circular cylinders
,”
J. Non-Newtonian Fluid Mech.
7
,
101
106
(
1980
).
19.
P. J.
Oliveira
, “
Method for time-dependent simulations of viscoelastic flows: Vortex shedding behind cylinder
,”
J. Non-Newtonian Fluid Mech.
101
,
113
137
(
2001
).
20.
M.
Sahin
and
R. G.
Owens
, “
On the effects of viscoelasticity on two-dimensional vortex dynamics in the cylinder wake
,”
J. Non-Newtonian Fluid Mech.
123
,
121
139
(
2004
).
21.
D.
Richter
,
G.
Iaccarino
, and
E.
Shaqfeh
, “
Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers
,”
J. Fluid Mech.
651
,
415
442
(
2010
).
22.
C. W.
Rowley
and
S. T. M.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
23.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
, “
Volume 2: Kinetic theory
,” in
Dynamics of Polymeric Liquids
(
Wiley
,
1987
).
24.
M.
Belan
and
D.
Tordella
, “
Asymptotic expansions for two dimensional symmetrical laminar wakes
,”
Z. Angew. Math. Mech.
82
,
219
234
(
2002
).
25.
G. I.
Barenblatt
and
Y. B.
Zel'dovich
, “
Intermediate asymptotics in mathematical physics
,”
Russ. Math. Surv.
26
,
45
61
(
1971
).
26.
D.
Tordella
and
M.
Belan
, “
A new matched asymptotic expansion for the intermediate and far flow behind a finite body
,”
Phys. Fluids
15
,
1897
1906
(
2003
).
27.
C. M.
Bender
and
S. A.
Orszag
, “
Asymptotic methods and perturbation theory
,” in
Advanced Mathematical Methods for Scientists and Engineers I
(
Springer
,
New York
,
1999
).
28.
H.
Schlichting
,
Boundary-Layer Theory
(
McGraw-Hill
,
1979
).
29.
L. S. G.
Kovásznay
, “
Hot-wire investigation of the wake behind cylinders at low Reynolds numbers
,”
Proc. R. Soc. London, Ser. A
198
,
174
190
(
1949
).
30.
I.
Chang
, “
Navier–Stokes solutions at large distances from a finite body
,”
J. Math. Mech.
10
,
811
876
(
1961
).
31.
S.
Berrone
, “
Adaptive discretization of differential models in fluid dynamics
,” Ph.D. dissertation (
Politecnico di Torino
,
2001
).
32.
H. H.
Hu
and
D. D.
Joseph
, “
Numerical simulation of viscoelastic flow past a cylinder
,”
J. Non-Newtonian Fluid Mech.
37
,
347
377
(
1990
).
33.
D. J.
Tritton
,
Physical Fluid Dynamics
(
Van Nostrand Reinhold Inc
.,
1977
).
34.
A.
Acharya
,
R. A.
Mashelkar
, and
J.
Ulbrecht
, “
Flow of inelastic and viscoelastic fluids past a sphere I. Drag coefficient in creeping and boundary-layer flows
,”
Rheol. Acta
15
,
454
470
(
1976
).
You do not currently have access to this content.