In this paper, we introduce a mesh-free numerical framework using the finite pointset method for the modeling and simulation of injection molding processes. When compared to well-established mesh-based methods, which have been widely applied for these applications, our approach avoids the need for extensive preprocessing and enables accurate treatment of free surfaces and other associated phenomena. To accurately model the polymer injections, we consider a detailed material model, with temperature dependent viscosity and density, while also considering shear thinning behavior with a strain rate dependent viscosity. Our numerical investigations show that injection molding-specific problems such as the modeling of viscous flows and the fountain flow effect can be successfully implemented using our presented framework. For a thorough validation of our proposed model, we compare the simulated flow behavior with injection molding experiments, which are also performed in this work. The experimental setup considers the injection of a polymer melt into a spiral mold. The flow behavior is investigated experimentally at varying melt injection and wall temperature, with different threshold pressures. Our numerical simulations show a good comparison with these experimental results, both qualitatively and quantitatively. We also introduce a correction mechanism to ensure energy conservation, which has often been challenging in mesh-free approaches. This is the first time that the flow behavior in a mesh-free injection molding method has been experimentally validated and successfully applied to the simulation of an actual industrial vehicle component.

1.
C.
Fernandes
,
A. J.
Pontes
,
J. C.
Viana
, and
A.
Gaspar-Cunha
, “
Modeling and optimization of the injection-molding process: A review
,”
Adv. Polym. Technol.
37
,
429
449
(
2018
).
2.
C. A.
Hieber
and
S. F.
Shen
, “
A finite-element/finite-difference simulation of the injection-molding filling process
,”
J. Non-Newtonian Fluid Mech.
7
,
1
32
(
1980
).
3.
M.
Ren
,
J.
Gu
,
Z.
Li
,
S.
Ruan
, and
C.
Shen
, “
Simulation of polymer melt injection molding filling flow based on an improved SPH method with modified low-dissipation Riemann solver
,”
Macromol. Theory Simul.
31
,
2100029
(
2022
).
4.
C.
Shen
,
W.
Lixia
, and
Q.
Li
, “
Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method
,”
J. Mater. Process. Technol.
183
,
412
418
(
2007
).
5.
M. V.
Bruschke
and
S. G.
Advani
, “
A finite element/control volume approach to mold filling in anisotropic porous media
,”
Polym. Compos.
11
,
398
405
(
1990
).
6.
E.
Holm
and
H. P.
Langtangen
, “
A unified finite element model for the injection molding process
,”
Comput. Methods Appl. Mech. Eng.
178
,
413
429
(
1999
).
7.
H.
Chen
,
P.
Wapperom
, and
D. G.
Baird
, “
The use of flow type dependent strain reduction factor to improve fiber orientation predictions for an injection molded center-gated disk
,”
Phys. Fluids
31
,
123105
(
2019
).
8.
R.-Y.
Chang
and
W.-h.
Yang
, “
Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach
,”
Int. J. Numer. Methods Fluids
37
,
125
148
(
2001
).
9.
P. H.
Foss
,
H.-C.
Tseng
,
J.
Snawerdt
,
Y.-J.
Chang
,
W-h.
Yang
, and
C.-H.
Hsu
, “
Prediction of fiber orientation distribution in injection molded parts using moldex3D simulation
,”
Polym. Compos.
35
,
671
680
(
2014
).
10.
S.
Xue
,
N.
Phan-Thien
, and
R. I.
Tanner
, “
Three dimensional numerical simulations of viscoelastic flows through planar contractions
,”
J. Non-Newtonian Fluid Mech.
74
,
195
245
(
1998
).
11.
E.
Bertevas
,
J.
Férec
,
B. C.
Khoo
,
G.
Ausias
, and
N.
Phan-Thien
, “
Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process
,”
Phys. Fluids
30
,
103103
(
2018
).
12.
Y.
Morii
and
T.
Kawakatsu
, “
Lagrangian multiscale simulation of complex flows
,”
Phys. Fluids
33
,
093106
(
2021
).
13.
T.
Ye
,
D.
Pan
,
C.
Huang
, and
M.
Liu
, “
Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications
,”
Phys. Fluids
31
,
011301
(
2019
).
14.
X.-J.
Fan
,
R. I.
Tanner
, and
R.
Zheng
, “
Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow
,”
J. Non-Newtonian Fluid Mech.
165
,
219
226
(
2010
).
15.
L.
He
,
G.
Lu
,
D.
Chen
,
W.
Li
,
L.
Chen
,
J.
Yuan
, and
C.
Lu
, “
Smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites
,”
J. Compos. Mater.
52
,
1531
1539
(
2018
).
16.
K.
Wu
,
L.
Wan
,
H.
Zhang
, and
D.
Yang
, “
Numerical simulation of the injection molding process of short fiber composites by an integrated particle approach
,”
Int. J. Adv. Manuf. Technol.
97
,
3479
3491
(
2018
).
17.
X.
Xu
and
P.
Yu
, “
Modeling and simulation of injection molding process of polymer melt by a robust SPH method
,”
Appl. Math. Modell.
48
,
384
409
(
2017
).
18.
X.
Xu
and
P.
Yu
, “
Extension of SPH to simulate non-isothermal free surface flows during the injection molding process
,”
Appl. Math. Modell.
73
,
715
731
(
2019
).
19.
J.
Kuhnert
, “
General smoothed particle hydrodynamics
,” Ph.D. thesis (
Technische Universität Kaiserslautern
,
Aachen
,
1999
).
20.
A.
Jefferies
,
J.
Kuhnert
,
L.
Aschenbrenner
, and
U.
Giffhorn
, “
Finite pointset method for the simulation of a vehicle travelling through a body of water
,” in
Meshfree Methods for Partial Differential Equations VII
, edited by
M.
Griebel
and
M. A.
Schweitzer
(
Springer International Publishing
,
Cham
,
2015
), pp.
205
221
.
21.
I.
Michel
,
S. M. I.
Bathaeian
,
J.
Kuhnert
,
D.
Kolymbas
,
C.-H.
Chen
,
I.
Polymerou
,
C.
Vrettos
, and
A.
Becker
, “
Meshfree generalized finite difference methods in soil mechanics—Part II: Numerical results
,”
GEM Int. J. Geomath.
8
,
191
217
(
2017
).
22.
I.
Michel
,
T.
Seifarth
,
J.
Kuhnert
, and
P.
Suchde
, “
A meshfree generalized finite difference method for solution mining processes
,”
Comput. Part. Mech.
8
,
561
574
(
2021
).
23.
E. O.
Reséndiz-Flores
,
J.
Kuhnert
, and
F. R.
Saucedo-Zendejo
, “
Application of a generalized finite difference method to mould filling process
,”
Eur. J. Appl. Math.
29
,
450
469
(
2018
).
24.
E.
Oñate
,
J.
Rojek
,
M.
Chiumenti
,
S.
Idelsohn
,
F.
Del Pin
, and
R.
Aubry
, “
Advances in stabilized finite element and particle methods for bulk forming processes
,”
Comput. Methods Appl. Mech. Eng.
195
,
6750
6777
(
2006
).
25.
K.
Butler
,
E.
Oñate
,
S.
Idelsohn
, and
R.
Rossi
, “
Modeling polymer melt flow using the particle finite element method (PFEM)
,” in
Proceeding of The Interflam Conference
(
2007
).
26.
M.
Cremonesi
,
A.
Franci
,
S.
Idelsohn
, and
E.
Oñate
, “
A state of the art review of the particle finite element method (PFEM)
,”
Arch. Comput. Methods Eng.
27
,
1709
1735
(
2020
).
27.
Grand View Research
, “
Injection molded plastics market size, share & trends analysis report by raw material (polypropylene, ABS, HDPE, polystyrene), by application (packaging, automotive & transportation, medical), by region, and segment forecasts, 2021–2028
,” Report No. 978-1-68038-128-3 (
2021
).
28.
Injection Molding Handbook
, edited by
D. V.
Rosato
,
D. V.
Rosato
, and
M. G.
Rosato
, 3rd ed. (
Springer
,
Boston, MA
,
2000
).
29.
R.
Zheng
,
R. I.
Tanner
, and
X. J.
Fan
,
Injection Molding: Integration of Theory and Modeling Methods
(
Springer
,
Berlin/Heidelberg
,
2011
).
30.
Computer Modeling for Injection Molding: Simulation, Optimization, and Control
, edited by
H.
Zhou
(
Wiley
,
Hoboken, NJ
,
2013
).
31.
D. W.
van Krevelen
and
K.
te Nijenhuis
,
Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions
, 4th ed. (
Elsevier
,
Amsterdam
,
2009
).
32.
P.
Zoller
and
Y. A.
Fakhreddine
, “
Pressure-volume-temperature studies of semi-crystalline polymers
,”
Thermochim. Acta
238
,
397
415
(
1994
).
33.
C. A.
Hieber
, “
Modelling the PVT behavior of isotactic polypropylene
,”
Int. Polym. Process.
12
,
249
256
(
1997
).
34.
N.
Rudolph
and
T. A.
Osswald
,
Polymer Rheology: Fundamentals and Applications
(
Carl Hanser Verlag GmbH & Company KG
,
2014
).
35.
P.
Suchde
,
J.
Kuhnert
,
S.
Schröder
, and
A.
Klar
, “
A flux conserving meshfree method for conservation laws
,”
Int. J. Numer. Methods Eng.
112
,
238
256
(
2017
).
36.
R.
Brunotte
,
Die Thermodynamischen Und Verfahrenstechnischen Abläufe Der in-situ-Oberflächenmodifizierung Beim Spritzgießen
, Schriftenreihe Kunststoffe (
FKTU
,
2006
).
37.
P.
Suchde
and
J.
Kuhnert
, “
Point cloud movement for fully Lagrangian meshfree methods
,”
J. Comput. Appl. Math.
340
,
89
100
(
2018
).
38.
H. A.
van der Vorst
, “
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
,”
SIAM J. Sci. Stat. Comput.
13
,
631
644
(
1992
).
39.
P.
Suchde
,
J.
Kuhnert
, and
S.
Tiwari
, “
On meshfree GFDM solvers for the incompressible Navier–Stokes equations
,”
Comput. Fluids
165
,
1
12
(
2018
).
40.
J.
Kuhnert
, “
Meshfree numerical scheme for time dependent problems in fluid and continuum mechanics
,” in
Advances in PDE Modeling and Computation
, edited by
S.
Sundar
(
Anne Books
,
New Delhi
,
2014
), pp.
119
136
.
41.
C.
Drumm
,
S.
Tiwari
,
J.
Kuhnert
, and
H.-J.
Bart
, “
Finite pointset method for simulation of the liquid–liquid flow field in an extractor
,”
Comput. Chem. Eng.
32
,
2946
2957
(
2008
).
42.
B.
Seibold
, “
M-matrices in meshless finite difference methods
,” Ph.D. thesis (
Kaiserslautern University
,
2006
).
43.
T.
Seifarth
, “
Numerische Algortihmen Für gitterfreie Methoden zur Lösung von Transportproblemen
,” Ph.D. thesis (
University of Kassel
,
Kassel
,
2017
).
44.
E.
Kwan-yu Chiu
,
Q.
Wang
,
R.
Hu
, and
A.
Jameson
, “
A conservative mesh-free scheme and generalized framework for conservation laws
,”
SIAM J. Sci. Comput.
34
,
2896
2916
(
2012
).
45.
P.
Suchde
, “
Conservation and accuracy in meshfree generalized finite difference methods
,” Ph.D. thesis (
University of Kaiserslautern
,
Kaiserslautern, Germany
,
2018
).
46.
T.
Liszka
and
J.
Orkisz
, “
Special issue-computational methods in nonlinear mechanics the finite difference method at arbitrary irregular grids and its application in applied mechanics
,”
Comput. Struct.
11
,
83
95
(
1980
).
47.
J.
Benito
,
F.
Ureña
, and
L.
Gavete
, “
Influence of several factors in the generalized finite difference method
,”
Appl. Math. Modell.
25
,
1039
1053
(
2001
).
48.
S.
Milewski
, “
Selected computational aspects of the meshless finite difference method
,”
Numer. Algorithms
63
,
107
126
(
2013
).
49.
C.-M.
Fan
,
C.-N.
Chu
,
B.
Šarler
, and
T.-H.
Li
, “
Numerical solutions of waves-current interactions by generalized finite difference method
,”
Eng. Anal. Boundary Elem.
100
,
150
163
(
2019
).
50.
P.
Suchde
, “
A meshfree Lagrangian method for flow on manifolds
,”
Int. J. Numer. Methods Fluids
93
,
1871
1894
(
2021
).
51.
Y.
Wang
,
Y.
Gu
, and
J.
Liu
, “
A domain-decomposition generalized finite difference method for stress analysis in three-dimensional composite materials
,”
Appl. Math. Lett.
104
,
106226
(
2020
).
52.
H.
Xia
and
Y.
Gu
, “
Generalized finite difference method for electroelastic analysis of three-dimensional piezoelectric structures
,”
Appl. Math. Lett.
117
,
107084
(
2021
).
53.
J. P.
Morris
,
P. J.
Fox
, and
Y.
Zhu
, “
Modeling low Reynolds number incompressible flows using SPH
,”
J. Comput. Phys.
136
,
214
226
(
1997
).
54.
J. O.
Cruickshank
, “
Low-Reynolds-number instabilities in stagnating jet flows
,”
J. Fluid Mech.
193
,
111
127
(
1988
).
55.
E.
Mitsoulis
, “
Fountain flow of pseudoplastic and viscoplastic fluids
,”
J. Non-Newtonian Fluid Mech.
165
,
45
55
(
2010
).
56.
X. J.
Fan
,
R. I.
Tanner
, and
R.
Zheng
, “
Smoothed particle hydrodynamics and its application to non-Newtonian moulding flow
,” in
Injection Molding: Process, Design, and Applications
, edited by
Phoebe H.
Kauffer
(
Nova Science Publishers
,
2011
), pp.
101
154
.
You do not currently have access to this content.