Respiratory viruses are transported from an infected person to other neighboring people through respiratory droplets. These small droplets are easily advected by air currents in a room and can potentially infect others. In this work, the spread of droplets released during coughing, talking, and normal breathing is numerically analyzed in a typical conference room setting. The room space is occupied by ten people, with eight people sitting around a conference table and two people standing. Four different scenarios are considered, with the air-conditioning turned on/off and people wearing/not-wearing masks, to understand the spread of respiratory droplets inside the room. The flow in the room is simulated using a multiphase mixture model with properties computed for the inhaled and exhaled air using fundamental gas relations. The transport of respiratory droplets is analyzed using the discrete phase model with a range of droplet sizes fitted to data from previous experimental studies. The mask is modeled as porous media with the properties of a woven fabric computed using a newly developed model for multilayered homemade masks. The human inhalation and exhalation are modeled using analytical functions to mimic the biological flow patterns during breathing, coughing, and talking. Important observations about the air flow and dispersion of respiratory droplets in the conference room are presented based on the numerical analysis. Animations of all the results are included to provide insight into flow physics of the various dynamic conditions occurring in the room during an ongoing meeting. Although this study is conducted for a typical conference room, the newly developed models and techniques can be applied to other confined environments.

1.
S.
Stelzer-Braid
,
B. G.
Oliver
,
A. J.
Blazey
,
E.
Argent
,
T. P.
Newsome
,
W. D.
Rawlinson
, and
E. R.
Tovey
, “
Exhalation of respiratory viruses by breathing, coughing, and talking
,”
J. Med. Virol.
81
,
1674
1679
(
2009
).
2.
D. K.
Milton
,
M. P.
Fabian
,
B. J.
Cowling
,
M. L.
Grantham
, and
J. J.
McDevitt
, “
Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks
,”
PLoS Pathog.
9
,
e1003205
(
2013
).
3.
J. S.
Kutter
,
M. I.
Spronken
,
P. L.
Fraaij
,
R. A.
Fouchier
, and
S.
Herfst
, “
Transmission routes of respiratory viruses among humans
,”
Curr. Opin. Virol.
28
,
142
151
(
2018
).
4.
National Academies of Sciences, Engineering and Medicine
,
Rapid Expert Consultation on the Possibility of Bioaerosol Spread of SARS-CoV-2 for the COVID-19 Pandemic
(
National Academies Press
,
2020
).
5.
L.
Morawska
, “
Droplet fate in indoor environments, or can we prevent the spread of infection?
,”
Indoor Air
16
,
335
347
(
2006
).
6.
R. S.
Papineni
and
F. S.
Rosenthal
, “
The size distribution of droplets in the exhaled breath of healthy human subjects
,”
J. Aerosol Med.
10
,
105
116
(
1997
).
7.
X.
Xie
,
Y.
Li
,
H.
Sun
, and
L.
Liu
, “
Exhaled droplets due to talking and coughing
,”
J. R. Soc. Interface
6
,
S703
(
2009
).
8.
W. F.
Wells
, “
On air-borne infection: Study II. Droplets and droplet nuclei
,”
Am. J. Epidemiol.
20
,
611
618
(
1934
).
9.
X.
Xie
,
Y.
Li
,
A. T. Y.
Chwang
,
P. L.
Ho
, and
W. H.
Seto
, “
How far droplets can move in indoor environments—Revisiting the Wells evaporation-falling curve
,”
Indoor Air
17
,
211
225
(
2007
).
10.
M.-R.
Pendar
and
J. C.
Páscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
,
083305
(
2020
).
11.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
12.
L.
Borro
,
L.
Mazzei
,
M.
Raponi
,
P.
Piscitelli
,
A.
Miani
, and
A.
Secinaro
, “
The role of air conditioning in the diffusion of SARS-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children's hospital
,”
Environ. Res.
193
,
110343
(
2021
).
13.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
14.
A.
Konda
,
A.
Prakash
,
G. A.
Moss
,
M.
Schmoldt
,
G. D.
Grant
, and
S.
Guha
, “
Aerosol filtration efficiency of common fabrics used in respiratory cloth masks
,”
ACS Nano
14
,
6339
6347
(
2020
).
15.
Z.
Zhang
,
T.
Han
,
K. H.
Yoo
,
J.
Capecelatro
,
A. L.
Boehman
, and
K.
Maki
, “
Disease transmission through expiratory aerosols on an urban bus
,”
Phys. Fluids
33
,
015116
(
2021
).
16.
S.
Chatterjee
,
J. S.
Murallidharan
,
A.
Agrawal
, and
R.
Bhardwaj
, “
Why coronavirus survives longer on impermeable than porous surfaces
,”
Phys. Fluids
33
,
021701
(
2021
).
17.
H.
Liu
,
S.
He
,
L.
Shen
, and
J.
Hong
, “
Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant
,”
Phys. Fluids
33
,
023301
(
2021
).
18.
A.
Khosronejad
,
S.
Kang
,
F.
Wermelinger
,
P.
Koumoutsakos
, and
F.
Sotiropoulos
, “
A computational study of expiratory particle transport and vortex dynamics during breathing with and without face masks
,”
Phys. Fluids
33
,
066605
(
2021
).
19.
P.
Katre
,
S.
Banerjee
,
S.
Balusamy
, and
K. C.
Sahu
, “
Fluid dynamics of respiratory droplets in the context of COVID-19: Airborne and surfaceborne transmissions
,”
Phys. Fluids
33
,
081302
(
2021
).
20.
R.
Biswas
,
A.
Pal
,
R.
Pal
,
S.
Sarkar
, and
A.
Mukhopadhyay
, “
Risk assessment of COVID infection by respiratory droplets from cough for various ventilation scenarios inside an elevator: An OpenFOAM-based computational fluid dynamics analysis
,”
Phys. Fluids
34
,
013318
(
2022
).
21.
S. A.
Morsi
and
A. J.
Alexander
, “
An investigation of particle trajectories in two-phase flow systems
,”
J. Fluid Mech.
55
,
193
(
1972
).
22.
G.
Ejaimi
and
S.
Saeed
, “
An introduction to airway assessment and management (concise airway anatomy and pathophysiology)
,”
Ann. Int. Med. Dent. Res.
3
,
AN01
AN07
(
2016
).
23.
W.
Sutherland
, “
LII. The viscosity of gases and molecular force
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
36
,
507
531
(
1893
).
24.
F.
Herning
and
L.
Zipperer
, “
Calculation of the viscosity of technical gas mixtures from the viscosity of the individual gases
,”
Gas Wasserfoch
79
,
49
54
(
1936
).
25.
S. P.
Bhat
and
R. K.
Sullerey
, “
An assessment of turbulence models for S-duct diffusers with flow control
,” in
ASME Gas Turbine India Conference
(
American Society of Mechanical Engineers
,
2013
).
26.
P.
Rosin
, “
Laws governing the fineness of powdered coal
,”
J. Inst. Fuel
7
,
29
36
(
1933
).
27.
W.
Weibull
, “
A statistical distribution function of wide applicability
,”
J. Appl. Mech.
18
,
293
297
(
1951
).
28.
E.
Kubala
,
P.
Strzelecka
,
M.
Grzegocka
,
D.
Lietz-Kijak
,
H.
Gronwald
,
P.
Skomro
, and
E.
Kijak
, “
A review of selected studies that determine the physical and chemical properties of saliva in the field of dental treatment
,”
BioMed Res. Int.
2018
,
6572381
.
29.
A.
Sarkar
,
F.
Xu
, and
S.
Lee
, “
Human saliva and model saliva at bulk to adsorbed phases—Similarities and differences
,”
Adv. Colloid Interface Sci.
273
,
102034
(
2019
).
30.
H.
Darcy
,
Les Fontaines Publiques de la Ville de Dijon
(
Dalmont
,
Paris
,
1856
), p.
647
.
31.
C. N.
Davies
, “
The separation of airborne dust and particles
,”
Proc. Inst. Mech. Eng.
167
,
185
213
(
1953
).
32.
R.
Brown
,
Air Filtration—An Integrated Approach to the Theory and Applications of Fibrous Filters
(
Pergamon
,
1993
).
33.
S.
Ergun
, “
Fluid flow through packed columns
,”
Chem. Eng. Prog.
48
,
89
94
(
1952
).
34.
K.
Selvaranjan
,
S.
Navaratnam
,
P.
Rajeev
, and
N.
Ravintherakumaran
, “
Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions
,”
Environ. Challenges
3
,
100039
(
2021
).
35.
B. H.
Brown
,
R. H.
Smallwood
,
D. C.
Barber
,
P. V.
Lawford
, and
D. R.
Hose
,
Medical Physics and Biomedical Engineering
(
Institute of Physics Publishing
,
1999
), p.
768
.
36.
B.
Zhao
,
Z.
Zhang
, and
X.
Li
, “
Numerical study of the transport of droplets or particles generated by respiratory system indoors
,”
Build. Environ.
40
,
1032
1039
(
2005
).
37.
B. E.
Scharfman
,
A. H.
Techet
,
J. W. M.
Bush
, and
L.
Bourouiba
, “
Visualization of sneeze ejecta: Steps of fluid fragmentation leading to respiratory droplets
,”
Exp. Fluids
57
,
24
(
2016
).
38.
K.
Perlin
, “
An image synthesizer
,”
ACM SIGGRAPH Comput. Graph.
19
,
287
296
(
1985
).
39.
N.
van Doremalen
,
T.
Bushmaker
,
D. H.
Morris
,
M. G.
Holbrook
,
A.
Gamble
,
B. N.
Williamson
,
A.
Tamin
,
J. L.
Harcourt
,
N. J.
Thornburg
,
S. I.
Gerber
,
J. O.
Lloyd-Smith
,
E.
de Wit
, and
V. J.
Munster
, “
Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1
,”
N. Engl. J. Med.
382
,
1564
1567
(
2020
).
You do not currently have access to this content.