Foods can serve as a universal route for the understanding and appreciation of rheologically complex materials. The Soft Matter Kitchen is an educational outreach project started during the COVID-19 pandemic that leverages food recipes and experiments that can be carried out at home to discuss concepts in soft matter and rheology. This educational article showcases two representative outreach demonstrations developed by The Soft Matter Kitchen with detailed instructions for reproduction by a presenter. The first demonstration introduces the concept of complex materials to clarify the definition of rheology by comparing the flow behavior of whipped cream and honey. The second demonstration introduces the concept of material microstructure affecting material properties and macroscale behavior using a simple experiment with cheesecake. By grounding the presentation of this knowledge in food materials with which the audience likely already has experience, the goals of this project are to accelerate the understanding of rheological concepts, increase awareness of rheology in everyday life, and promote the development of intuition for rheologically complex materials.

1.
R.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
,
1999
).
2.
F. A.
Morrison
, “
Whate is Reology Anyway
?”
Rheol. Bull.
73
(
1
),
8
(
2004
); available at https://www.rheology.org/SoR/Publications/RheoBulletin/RB2004Jan.pdf.
3.
H. H.
Winter
, see https://rheology.tripod.com/ARC2004_Copy_1.htm (2004) for discussion on the lack of accessibility in rheology.
4.
R. H.
Ewoldt
, “
Extremely soft: Design with rheologically complex fluids
,”
Soft Rob.
1
,
12
(
2014
).
5.
F. A.
Morrison
,
Understanding Rheology
(
Oxford University Press
,
New York
,
2001
).
6.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
7.
M.
Hossain
and
R. H.
Ewoldt
, “
Do-it-yourself rheometry
,”
Phys. Fluids Kitchen Flows
(submitted) (n.d.).
8.
A. Z.
Nelson
,
K. S.
Schweizer
,
B. M.
Rauzan
,
R. G.
Nuzzo
,
J.
Vermant
, and
R. H.
Ewoldt
, “
Designing and transforming yield-stress fluids
,”
Curr. Opin. Solid State Mater. Sci.
23
,
100758
(
2019
).
9.
R. H.
Ewoldt
and
C.
Saengow
, “
Designing complex fluids
,”
Annu. Rev. Fluid Mech.
54
,
413
(
2022
).
10.
R. E.
Corman
and
R. H.
Ewoldt
, “
Mapping linear viscoelasticity for design and tactile intuition
,”
Appl. Rheol.
29
,
141
(
2019
).
11.
C.
Faustino
and
L.
Pinheiro
, “
Analytical rheology of honey: A state-of-the-art review
,”
Foods
10
,
1709
(
2021
).
12.
J. A.
Lewis
, “
Direct-write assembly of ceramics from colloidal inks
,”
Curr. Opin. Solid State Mater. Sci.
6
,
245
(
2002
).
13.
B. M.
Rauzan
,
A. Z.
Nelson
,
S. E.
Lehman
,
R. H.
Ewoldt
, and
R. G.
Nuzzo
, “
Particle‐free emulsions for 3D printing elastomers
,”
Adv. Funct. Mater.
28
,
1707032
(
2018
).
14.
See https://www.exploratorium.edu/cooking/eggs/eggscience.html (
2021
) for an example of how information about egg proteins is presented to a general audience.
15.
H.
McGee
,
On Food and Cooking: The Science and Lore of the Kitchen
(
Scribner
,
New York
,
2004
).
16.
P. J.
Flory
, “
Introductory lecture
,”
Faraday Discuss. Chem. Soc.
57
,
7
(
1974
).
17.
A. Z.
Nelson
and
R. H.
Ewoldt
, “
Design of yield-stress fluids: A rheology-to-structure inverse problem
,”
Soft Matter
13
,
7578
(
2017
).
18.
J. J.
Griebler
and
S. A.
Rogers
, “
The nonlinear rheology of complex yield stress foods
,”
Phys. Fluids
34
,
023107
(
2022
).
19.
P. T.
Spicer
,
M.
Caggioni
, and
T. M.
Squires
, “
Complex fluid formulations: A source of inspiration and innovation
,”
CEP Mag.
(to be published).
20.
P.
Dontula
and
C. W.
Macosko
, “
Yield stress in Orbitz
,”
Rheol. Bull.
68
,
5
(
1999
); available at https://www.rheology.org/SoR/Publications/RheoBulletin/RB1999Jan.pdf.
21.
M.
Foverskov
,
D. S.
Grainger
,
H.
Lund
, and
J. F.
Wells
,
U.S. patent application 20170191005A1
(
2017
).
22.
A. Z.
Nelson
,
R. E.
Bras
,
J.
Liu
, and
R. H.
Ewoldt
, “
Extending yield-stress fluid paradigms
,”
J. Rheol.
62
,
357
(
2018
).
23.
G. P.
Citerne
,
P. J.
Carreau
, and
M.
Moan
, “
Rheological properties of peanut butter
,”
Rheol. Acta
40
,
86
(
2001
).
24.
J. R.
Samaniuk
,
T. W.
Shay
,
T. W.
Root
,
D. J.
Klingenberg
, and
C. T.
Scott
, “
A novel rheometer design for yield stress fluids
,”
AIChE J.
60
,
1523
(
2014
).
25.
J. M.
Piau
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges
,”
J. Non-Newtonian Fluid Mech.
144
,
1
(
2007
).
26.
V. G.
Muir
,
T. H.
Qazi
,
J.
Shan
,
J.
Groll
, and
J. A.
Burdick
, “
Influence of microgel fabrication technique on granular hydrogel properties
,”
ACS Biomater. Sci. Eng.
7
,
4269
(
2021
).

Supplementary Material

You do not currently have access to this content.