Foams play an essential role in food. They contribute to the texture, aroma, and mouthfeel of a product; potentially reduce calories; and visually inspire the consumer. Understanding factors that control foam structure and bubble lifetimes is, therefore, of considerable interest. This review focuses on the effect of the continuous phase rheology for bubbly systems with an emphasis on edible foams. We review common biopolymers used to alter the rheology of the continuous phase of food foams and discuss potential mechanisms responsible for the production and stabilization of such systems. Variations to the matrix (i.e., foamulsions and oil-based foams) and the addition of gelling particles are also considered. This review emphasizes the necessity for fine control over the mechanical properties of the continuous phase to achieve the desired sensorial attributes and foam stability in food products. However, the dynamics of viscoelastic food foams are poorly understood due to their complex nature. We, therefore, discuss rheological studies on model foams and provide future directions for research that is in keeping with current trends and challenges in the food industry and culinary arts.

1.
B.
Bhandari
,
Y. H.
Roos
 et al,
Food Materials Science and Engineering
(
Wiley Online Library
,
2012
).
2.
V. A.
Vaclavik
,
E. W.
Christian
, and
E. W.
Christian
,
Essentials of Food Science
(
Springer
,
2008
), Vol.
42
.
3.
J. M.
Aguilera
, “
Why food microstructure?
,”
J. Food Eng.
67
,
3
11
(
2005
).
4.
R.
Zúñiga
and
J.
Aguilera
, “
Aerated food gels: Fabrication and potential applications
,”
Trends Food Sci. Technol.
19
,
176
187
(
2008
).
5.
A.
Ellis
and
A.
Lazidis
, “
Foams for food applications
,” in
Polymers for Food Applications
(
Springer
,
2018
), pp.
271
327
.
6.
D.
Langevin
,
Emulsions, Microemulsions and Foams
(
Springer
,
2020
).
7.
D. L.
Weaire
and
S.
Hutzler
,
The Physics of Foams
(
Oxford University Press
,
2001
).
8.
G. M.
Campbell
and
E.
Mougeot
, “
Creation and characterisation of aerated food products
,”
Trends Food Sci. Technol.
10
,
283
296
(
1999
).
9.
B.
Petkova
,
S.
Tcholakova
,
M.
Chenkova
,
K.
Golemanov
,
N.
Denkov
,
D.
Thorley
, and
S.
Stoyanov
, “
Foamability of aqueous solutions: Role of surfactant type and concentration
,”
Adv. Colloid Interface Sci.
276
,
102084
(
2020
).
10.
C.
Monteux
, “
Adsorption of soluble polymers at liquid interfaces and in foams
,”
C. R. Phys.
15
,
775
785
(
2014
).
11.
E. A.
Foegeding
,
P.
Luck
, and
J. P.
Davis
, “
Factors determining the physical properties of protein foams
,”
Food Hydrocolloids
20
,
284
292
(
2006
).
12.
A. C.
Martinez
,
E.
Rio
,
G.
Delon
,
A.
Saint-Jalmes
,
D.
Langevin
, and
B. P.
Binks
, “
On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: Link with microscopic surface properties
,”
Soft Matter
4
,
1531
1535
(
2008
).
13.
A.
Stocco
,
E.
Rio
,
B. P.
Binks
, and
D.
Langevin
, “
Aqueous foams stabilized solely by particles
,”
Soft Matter
7
,
1260
1267
(
2011
).
14.
L. K.
Shrestha
,
K.
Aramaki
,
H.
Kato
,
Y.
Takase
, and
H.
Kunieda
, “
Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems
,”
Langmuir
22
,
8337
8345
(
2006
).
15.
L.
Zhang
,
L.
Tian
,
H.
Du
,
S.
Rouziere
,
N.
Wang
, and
A.
Salonen
, “
Foams stabilized by surfactant precipitates: Criteria for ultrastability
,”
Langmuir
33
,
7305
7311
(
2017
).
16.
B. S.
Murray
, “
Recent developments in food foams
,”
Curr. Opin. Colloid Interface Sci.
50
,
101394
(
2020
).
17.
Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee
, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0572 for “
Second regulatory review on nanomaterials
” (
2012
).
18.
S.
Cohen-Addad
,
R.
Höhler
, and
O.
Pitois
, “
Flow in foams and flowing foams
,”
Annu. Rev. Fluid Mech.
45
,
241
267
(
2013
).
19.
W.
Kloek
,
T.
Van Vliet
, and
M.
Meinders
, “
Effect of bulk and interfacial rheological properties on bubble dissolution
,”
J. Colloid Interface Sci.
237
,
158
166
(
2001
).
20.
A.
Gittings
and
D. J.
Durian
, “
Statistics of bubble rearrangement dynamics in a coarsening foam
,”
Phys. Rev. E
78
,
066313
(
2008
).
21.
S.
Hilgenfeldt
,
S. A.
Koehler
, and
H. A.
Stone
, “
Dynamics of coarsening foams: Accelerated and self-limiting drainage
,”
Phys. Rev. Lett.
86
,
4704
(
2001
).
22.
E.
Rio
and
A.-L.
Biance
, “
Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence
,”
ChemPhysChem
15
,
3692
3707
(
2014
).
23.
R.-M.
Guillermic
,
A.
Salonen
,
J.
Emile
, and
A.
Saint-Jalmes
, “
Surfactant foams doped with laponite: Unusual behaviors induced by aging and confinement
,”
Soft Matter
5
,
4975
4982
(
2009
).
24.
Z.
Briceño-Ahumada
,
A.
Maldonado
,
M.
Impéror-Clerc
, and
D.
Langevin
, “
On the stability of foams made with surfactant bilayer phases
,”
Soft Matter
12
,
1459
1467
(
2016
).
25.
H.
Bey
,
F.
Wintzenrieth
,
O.
Ronsin
,
R.
Höhler
, and
S.
Cohen-Addad
, “
Stabilization of foams by the combined effects of an insoluble gas species and gelation
,”
Soft Matter
13
,
6816
6830
(
2017
).
26.
H.
Zheng
,
M.
Morgenstern
,
O.
Campanella
, and
N.
Larsen
, “
Rheological properties of dough during mechanical dough development
,”
J. Cereal Sci.
32
,
293
306
(
2000
).
27.
A.
Salonen
, “
Mixing bubbles and drops to make foamed emulsions
,”
Curr. Opin. Colloid Interface Sci.
50
,
101381
(
2020
).
28.
M.
Dinkgreve
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring ‘the’ yield stress
,”
J. Non-Newtonian Fluid Mech.
238
,
233
241
(
2016
).
29.
L.
Bécu
,
S.
Manneville
, and
A.
Colin
, “
Yielding and flow in adhesive and nonadhesive concentrated emulsions
,”
Phys. Rev. Lett.
96
,
138302
(
2006
).
30.
M.
Schneider
,
Z.
Zou
,
D.
Langevin
, and
A.
Salonen
, “
Foamed emulsion drainage: Flow and trapping of drops
,”
Soft Matter
13
,
4132
4141
(
2017
).
31.
P.
Ramel
and
A.
Marangoni
, “
Microstructure of dairy fat products
,” in
Encyclopedia of Food Chemistry
(
Elsevier
,
2019
), Vol.
3
, pp.
39
46
.
32.
A.
Saint-Jalmes
, “
Physical chemistry in foam drainage and coarsening
,”
Soft Matter
2
,
836
849
(
2006
).
33.
I.
Cantat
,
S.
Cohen-Addad
,
F.
Elias
,
F.
Graner
,
R.
Höhler
,
O.
Pitois
,
F.
Rouyer
, and
A.
Saint-Jalmes
,
Foams: Structure and Dynamics
(
OUP
,
Oxford
,
2013
).
34.
C.
Clarke
,
F.
Spyropoulos
, and
I. T.
Norton
, “
Surface rheological measurements of isolated food foam systems
,”
Phys. Fluids
31
,
092002
(
2019
).
35.
A.-L.
Fameau
and
A.
Saint-Jalmes
, “
Recent advances in understanding and use of oleofoams
,”
Front. Sustainable Food Syst.
4
,
110
(
2020
).
36.
M.
Jarpa-Parra
and
L.
Chen
, “
Applications of plant polymer-based solid foams: Current trends in the food industry
,”
Appl. Sci.
11
,
9605
(
2021
).
37.
P. A.
Williams
and
G. O.
Phillips
, “
Introduction to food hydrocolloids
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2021
), pp.
3
26
.
38.
M.
Glicksman
,
Food Hydrocolloids
(
CRC Press
,
2020
), Vol.
3
, pp.
4
21
.
39.
C. L.
Ang
,
K. K. T.
Goh
,
K.
Lim
, and
L.
Matia-Merino
, “
Rheological characterization of a physically-modified waxy potato starch: Investigation of its shear-thickening mechanism
,”
Food Hydrocolloids
120
,
106908
(
2021
).
40.
M.
Rao
,
P.
Okechukwu
,
P. D.
Silva
, and
J.
Oliveira
, “
Rheological behavior of heated starch dispersions in excess water: Role of starch granule
,”
Carbohydr. Polym.
33
,
273
283
(
1997
).
41.
G. H.
McKinley
and
T.
Sridhar
, “
Filament-stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
,
375
415
(
2002
).
42.
H. A.
Barnes
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier
,
1989
), Vol.
3
.
43.
V.
Evageliou
, “
Shear and extensional rheology of selected polysaccharides
,”
Int. J. Food Sci. Technol.
55
,
1853
1861
(
2020
).
44.
J.
Chen
, “
Food oral processing—A review
,”
Food Hydrocolloids
23
,
1
25
(
2009
).
45.
A. E.
Blok
,
D. P.
Bolhuis
,
H. V.
Kibbelaar
,
D.
Bonn
,
K. P.
Velikov
, and
M.
Stieger
, “
Comparing rheological, tribological and sensory properties of microfibrillated cellulose dispersions and xanthan gum solutions
,”
Food Hydrocolloids
121
,
107052
(
2021
).
46.
M.
Lyly
,
M.
Salmenkallio-Marttila
,
T.
Suortti
,
K.
Autio
,
K.
Poutanen
, and
L.
Lähteenmäki
, “
Influence of oat β-glucan preparations on the perception of mouthfeel and on rheological properties in beverage prototypes
,”
Cereal Chem.
80
,
536
541
(
2003
).
47.
Q.
He
,
J.
Hort
, and
B.
Wolf
, “
Predicting sensory perceptions of thickened solutions based on rheological analysis
,”
Food Hydrocolloids
61
,
221
232
(
2016
).
48.
W.
Drenckhan
and
A.
Saint-Jalmes
, “
The science of foaming
,”
Adv. Colloid Interface Sci.
222
,
228
259
(
2015
).
49.
M.
Safouane
,
A.
Saint-Jalmes
,
V.
Bergeron
, and
D.
Langevin
, “
Viscosity effects in foam drainage: Newtonian and non-Newtonian foaming fluids
,”
Eur. Phys. J. E
19
,
195
202
(
2006
).
50.
E. A.
Foegeding
and
J. P.
Davis
, “
Food protein functionality: A comprehensive approach
,”
Food Hydrocolloids
25
,
1853
1864
(
2011
).
51.
S.
Damodaran
, “
Protein stabilization of emulsions and foams
,”
J. Food Sci.
70
,
R54
R66
(
2006
).
52.
P.
Wierenga
and
H.
Gruppen
, “
New views on foams from protein solutions
,”
Curr. Opin. Colloid Interface Sci.
15
,
365
373
(
2010
).
53.
F.
Wei
and
H.
Yano
, “
Development of ‘new’ bread and cheese
,”
Processes
8
,
1541
(
2020
).
54.
E.
Chiotellis
and
G. M.
Campbell
, “
Proving of bread dough I: Modelling the evolution of the bubble size distribution
,”
Food Bioprod. Process.
81
,
194
206
(
2003
).
55.
E.
Chiotellis
and
G. M.
Campbell
, “
Proving of bread dough II: Measurement of gas production and retention
,”
Food Bioproducts Processing
81
,
207
216
(
2003
).
56.
P.
Shah
,
G. M.
Campbell
,
S.
McKee
, and
C.
Rielly
, “
Proving of bread dough: Modelling the growth of individual bubbles
,”
Food Bioprod. Process.
76
,
73
79
(
1998
).
57.
C.
Primo-Martín
,
G.
Van Dalen
,
M.
Meinders
,
A.
Don
,
R.
Hamer
, and
T.
Van Vliet
, “
Bread crispness and morphology can be controlled by proving conditions
,”
Food Res. Int.
43
,
207
217
(
2010
).
58.
H.
Wieser
, “
Chemistry of gluten proteins
,”
Food Microbiol.
24
,
115
119
(
2007
).
59.
J. R.
Biesiekierski
, “
What is gluten?
,”
J. Gastroenterol. Hepatol.
32
,
78
81
(
2017
).
60.
C. W.
Wrigley
, “
Giant proteins with flour power
,”
Nature
381
,
738
739
(
1996
).
61.
K. A.
Tilley
,
R. E.
Benjamin
,
K. E.
Bagorogoza
,
B. M.
Okot-Kotber
,
O.
Prakash
, and
H.
Kwen
, “
Tyrosine cross-links: Molecular basis of gluten structure and function
,”
J. Agric. Food Chem.
49
,
2627
2632
(
2001
).
62.
P.
Belton
, “
Mini review: On the elasticity of wheat gluten
,”
J. Cereal Sci.
29
,
103
107
(
1999
).
63.
J. A.
Delcour
,
I. J.
Joye
,
B.
Pareyt
,
E.
Wilderjans
,
K.
Brijs
, and
B.
Lagrain
, “
Wheat gluten functionality as a quality determinant in cereal-based food products
,”
Annu. Rev. Food Sci. Technol.
3
,
469
492
(
2012
).
64.
M. P.
Lindsay
and
J. H.
Skerritt
, “
The glutenin macropolymer of wheat flour doughs: Structure–function perspectives
,”
Trends Food Sci. Technol.
10
,
247
253
(
1999
).
65.
H.
Goesaert
,
K.
Brijs
,
W.
Veraverbeke
,
C.
Courtin
,
K.
Gebruers
, and
J.
Delcour
, “
Wheat flour constituents: How they impact bread quality, and how to impact their functionality
,”
Trends Food Sci. Technol.
16
,
12
30
(
2005
).
66.
S.
Brandner
,
T.
Becker
, and
M.
Jekle
, “
Classification of starch-gluten networks into a viscoelastic liquid or solid, based on rheological aspects—A review
,”
Int. J. Biol. Macromol.
136
,
1018
1025
(
2019
).
67.
N.
Ooms
and
J. A.
Delcour
, “
How to impact gluten protein network formation during wheat flour dough making
,”
Curr. Opinion Food Sci.
25
,
88
97
(
2019
).
68.
H.
Singh
and
F.
MacRitchie
, “
Application of polymer science to properties of gluten
,”
J. Cereal Sci.
33
,
231
243
(
2001
).
69.
P. R.
Shewry
,
N. G.
Halford
,
P. S.
Belton
, and
A. S.
Tatham
, “
The structure and properties of gluten: An elastic protein from wheat grain
,”
Philos. Trans. R. Soc. London, Ser. B
357
,
133
142
(
2002
).
70.
B. S.
Sroan
,
S. R.
Bean
, and
F.
MacRitchie
, “
Mechanism of gas cell stabilization in bread making. I. The primary gluten–starch matrix
,”
J. Cereal Sci.
49
,
32
40
(
2009
).
71.
Z.
Gan
,
R.
Angold
,
M.
Williams
,
P.
Ellis
,
J.
Vaughan
, and
T.
Galliard
, “
The microstructure and gas retention of bread dough
,”
J. Cereal Sci.
12
,
15
24
(
1990
).
72.
Z.
Gan
,
P.
Ellis
, and
J.
Schofield
, “
Gas cell stabilisation and gas retention in wheat bread dough
,”
J. Cereal Sci.
21
,
215
230
(
1995
).
73.
W.
Li
,
B.
Dobraszczyk
, and
P.
Wilde
, “
Surface properties and locations of gluten proteins and lipids revealed using confocal scanning laser microscopy in bread dough
,”
J. Cereal Sci.
39
,
403
411
(
2004
).
74.
A.
Turbin-Orger
,
P.
Babin
,
E.
Boller
,
L.
Chaunier
,
H.
Chiron
,
G.
Della Valle
,
R.
Dendievel
,
A.
Réguerre
, and
L.
Salvo
, “
Growth and setting of gas bubbles in a viscoelastic matrix imaged by x-ray microtomography: The evolution of cellular structures in fermenting wheat flour dough
,”
Soft Matter
11
,
3373
3384
(
2015
).
75.
F.
Janssen
,
A. G.
Wouters
, and
J. A.
Delcour
, “
Gas cell stabilization by aqueous-phase constituents during bread production from wheat and rye dough and oat batter: Dough or batter liquor as model system
,”
Compr. Rev. Food Sci. Food Safety
20
,
3881
3917
(
2021
).
76.
J.
Baker
and
M.
Mize
, “
Mixing doughs in vacuum and in the presence of various gases
,”
Cereal Chem.
14
,
721
734
(
1937
).
77.
J.
Baker
and
M.
Mize
, “
The origin of the gas cell in bread dough
,”
Cereal Chem.
18
,
19
(
1941
).
78.
H.
He
and
R.
Hoseney
, “
Gas retention of different cereal flours
,”
Cereal Chem.
68
,
334
336
(
1991
).
79.
T.
Van Vliet
,
A.
Janssen
,
A.
Bloksma
, and
P.
Walstra
, “
Strain hardening of dough as a requirement for gas retention
,”
J. Texture Stud.
23
,
439
460
(
1992
).
80.
G. M.
Campbell
,
R.
Herrero-Sanchez
,
R.
Payo-Rodriguez
, and
M. L.
Merchan
, “
Measurement of dynamic dough density and effect of surfactants and flour type on aeration during mixing and gas retention during proofing
,”
Cereal Chem.
78
,
272
277
(
2001
).
81.
B.
Dobraszczyk
,
J.
Smewing
,
M.
Albertini
,
G.
Maesmans
, and
J.
Schofield
, “
Extensional rheology and stability of gas cell walls in bread doughs at elevated temperatures in relation to breadmaking performance
,”
Cereal Chem.
80
,
218
224
(
2003
).
82.
E.
Mills
,
P.
Wilde
,
L.
Salt
, and
P.
Skeggs
, “
Bubble formation and stabilization in bread dough
,”
Food Bioproducts Process.
81
,
189
193
(
2003
).
83.
P.
Martin
, “
Controlling the breadmaking process: The role of bubbles in bread
,”
Cereal Foods World
49
,
72
75
(
2004
).
84.
C.
Primo-Martin
,
E.
Castro-Prada
,
M.
Meinders
,
P.
Vereijken
, and
T.
Van Vliet
, “
Effect of structure in the sensory characterization of the crispness of toasted rusk roll
,”
Food Res. Int.
41
,
480
486
(
2008
).
85.
A.
Turbin-Orger
,
E.
Boller
,
L.
Chaunier
,
H.
Chiron
,
G.
Della Valle
, and
A.-L.
Réguerre
, “
Kinetics of bubble growth in wheat flour dough during proofing studied by computed x-ray micro-tomography
,”
J. Cereal Sci.
56
,
676
683
(
2012
).
86.
A.
Cappelli
,
L.
Bettaccini
, and
E.
Cini
, “
The kneading process: A systematic review of the effects on dough rheology and resulting bread characteristics, including improvement strategies
,”
Trends Food Sci. Technol.
104
,
91
101
(
2020
).
87.
B.
Dobraszczyk
and
M.
Morgenstern
, “
Rheology and the breadmaking process
,”
J. Cereal Sci.
38
,
229
245
(
2003
).
88.
V.
Stojceska
and
F.
Butler
, “
Investigation of reported correlation coefficients between rheological properties of the wheat bread doughs and baking performance of the corresponding wheat flours
,”
Trends Food Sci. Technol.
24
,
13
18
(
2012
).
89.
S.
Singh
and
N.
Singh
, “
Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties
,”
Food Hydrocolloids
33
,
342
348
(
2013
).
90.
I.
Bernklau
,
L.
Lucas
,
M.
Jekle
, and
T.
Becker
, “
Protein network analysis—A new approach for quantifying wheat dough microstructure
,”
Food Res. Int.
89
,
812
819
(
2016
).
91.
Y.
Dong
and
S.
Karboune
, “
A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes
,”
Compr. Rev. Food Sci. Food Safety
20
,
1937
1981
(
2021
).
92.
A.
Bettge
,
G.
Rubenthaler
, and
Y.
Pomeranz
, “
Alveograph algorithms to predict functional properties of wheat in bread and cookie baking
,”
Cereal Chem
66
,
81
86
(
1989
).
93.
T. D.
Hadnadev
,
M.
Pojic
,
M.
Hadnadev
, and
A.
Torbica
, “
The role of empirical rheology in flour quality control
,” in
Wide Spectra of Quality Control
(
IntechOpen
,
2011
).
94.
S.
Tietze
,
M.
Jekle
, and
T.
Becker
, “
Possibilities to derive empirical dough characteristics from fundamental rheology
,”
Trends Food Sci. Technol.
57
,
1
10
(
2016
).
95.
S.
Chatraei
,
C. W.
Macosko
, and
H.
Winter
, “
Lubricated squeezing flow: A new biaxial extensional rheometer
,”
J. Rheol.
25
,
433
443
(
1981
).
96.
B.
Dobraszczyk
and
C.
Roberts
, “
Strain hardening and dough gas cell-wall failure in biaxial extension
,”
J. Cereal Sci.
20
,
265
274
(
1994
).
97.
T. S.
Ng
,
G. H.
McKinley
, and
M.
Padmanabhan
, “
Linear to non-linear rheology of wheat flour dough
,”
Appl. Rheol.
16
,
265
274
(
2006
).
98.
C. M.
Rosell
,
J. A.
Rojas
, and
C. B.
De Barber
, “
Influence of hydrocolloids on dough rheology and bread quality
,”
Food Hydrocolloids
15
,
75
81
(
2001
).
99.
L.
Marchetti
,
M.
Cardós
,
L.
Campaña
, and
C.
Ferrero
, “
Effect of glutens of different quality on dough characteristics and breadmaking performance
,”
LWT-Food Sci. Technol.
46
,
224
231
(
2012
).
100.
C.
Ferrero
, “
Hydrocolloids in wheat breadmaking: A concise review
,”
Food Hydrocolloids
68
,
15
22
(
2017
).
101.
A. V.
Balakireva
and
A. A.
Zamyatnin
, “
Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities
,”
Nutrients
8
,
644
(
2016
).
102.
H.
Yano
, “
Recent practical researches in the development of gluten-free breads
,”
NPJ Sci. Food
3
,
1
8
(
2019
).
103.
A.
Cappelli
,
N.
Oliva
, and
E.
Cini
, “
A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies
,”
Appl. Sci.
10
,
6559
(
2020
).
104.
B. P.
Binks
and
T. S.
Horozov
,
Colloidal Particles at Liquid Interfaces
(
Cambridge University Press
,
2006
).
105.
M. E.
Matos
and
C. M.
Rosell
, “
Understanding gluten-free dough for reaching breads with physical quality and nutritional balance
,”
J. Sci. Food Agric.
95
,
653
661
(
2015
).
106.
S.
Renzetti
and
C. M.
Rosell
, “
Role of enzymes in improving the functionality of proteins in non-wheat dough systems
,”
J. Cereal Sci.
67
,
35
45
(
2016
).
107.
H.
Yano
, “
Improvements in the bread-making quality of gluten-free rice batter by glutathione
,”
J. Agric. Food Chem.
58
,
7949
7954
(
2010
).
108.
R.
Tijssen
,
L.
Canabady-Rochelle
, and
M.
Mellema
, “
Gelation upon long storage of milk drinks with carrageenan
,”
J. Dairy Sci.
90
,
2604
2611
(
2007
).
109.
A.
Imeson
, “
Carrageenan and furcellaran
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
164
185
.
110.
T.
Truong
,
C.
Lopez
,
B.
Bhandari
, and
S.
Prakash
,
Dairy Fat Products and Functionality
(
Springer
,
2020
).
111.
A.
Imeson
 et al,
Food Stabilisers, Thickeners and Gelling Agents
(
Wiley Online Library
,
2010
), Vol.
34
.
112.
A.
Regand
and
H.
Goff
, “
Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems
,”
J. Dairy Sci.
85
,
2722
2732
(
2002
).
113.
H.
Goff
,
K.
Caldwell
,
D.
Stanley
, and
T.
Maurice
, “
The influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream
,”
J. Dairy Sci.
76
,
1268
1277
(
1993
).
114.
M.
Akutu
,
K.
Kubota
, and
K.
Nakamura
, “
Light scattering, sound velocity and viscoelastic behavior of aqueous gellan solutions
,” in
Physical Chemistry and Industrial Application of Gellan Gum
(
Springer
,
1999
), pp.
56
61
.
115.
N.
Morrison
,
R.
Clark
,
Y.
Chen
,
T.
Talashek
, and
G.
Sworn
, “
Gelatin alternatives for the food industry
,” in
Physical Chemistry and Industrial Application of Gellan Gum
(
Springer
,
1999
), pp.
127
131
.
116.
E.
Miyoshi
and
K.
Nishinari
, “
Rheological and thermal properties near the sol-gel transition of gellan gum aqueous solutions
,” in
Physical Chemistry and Industrial Application of Gellan Gum
(
Springer
,
1999
), pp.
68
82
.
117.
T.
Omoto
,
Y.
Uno
, and
I.
Asai
, “
The latest technologies for the application of gellan gum
,” in
Physical Chemistry and Industrial Application of Gellan Gum
(
Springer
,
1999
), pp.
123
126
.
118.
T.
Takigawa
,
K.
Nakajima
, and
T.
Masuda
, “
Rheological properties of the gellan/water system
,” in
Physical Chemistry and Industrial Application of Gellan Gum
(
Springer
,
1999
), pp.
62
67
.
119.
G.
Sworn
and
L.
Stouby
, “
Gellan gum
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2021
), pp.
855
885
.
120.
J. W.
Brady
,
Introductory Food Chemistry
(
Comstock
,
2013
).
121.
H. D.
Goff
and
Q.
Guo
, “
The role of hydrocolloids in the development of food structure
,” in
Handbook of Food Structure Development
(
The Royal Society of Chemistry
,
2019
), Chap. 1, pp.
1
28
.
122.
R.
Valli
and
R.
Clark
, “
Gellan gum
,” in
Food Stabilisers, Thickeners Gelling Agents
(
Wiley-Blackwell
,
2009
), p. 145.
123.
M.
Koç
,
B.
Koç
,
G.
Susyal
,
M. S.
Yilmazer
,
N.
Bağdatl ioğlu
, and
F.
Kaymak-Ertekin
, “
Improving functionality of whole egg powder by the addition of gelatine, lactose, and pullulan
,”
J. Food Sci.
76
,
S508
S515
(
2011
).
124.
P.
Ptaszek
, “
A geometrical interpretation of large amplitude oscillatory shear (LAOS) in application to fresh food foams
,”
J. Food Eng.
146
,
53
61
(
2015
).
125.
L.
Sheng
,
G.
Tang
,
Q.
Wang
,
J.
Zou
,
M.
Ma
, and
X.
Huang
, “
Molecular characteristics and foaming properties of ovalbumin-pullulan conjugates through the maillard reaction
,”
Food Hydrocolloids
100
,
105384
(
2020
).
126.
J.
Park
and
T.
Khan
, “
Other microbial polysaccharides: Pullulan, scleroglucan, elsinan, levan, alternant, dextran
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
592
614
.
127.
H.
Chaen
, “
Pullulan
,” in
Food Stabilisers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
266
274
.
128.
M.
Kabziński
,
K.
Neupauer
,
M.
Nowak
,
J.
Kruk
, and
K.
Kaczmarczyk
, “
The impact of addition of xanthan gum and guar gum on rheological properties of foams produced by continuous method
,”
Polimery
64
,
538
541
(
2019
).
129.
M.
Khezri
,
S.
Shahriari
, and
L.
Shahsavani
, “
The effect of xanthan gum and temperature on foam stability of milk-based espresso coffees
,”
J. Food Biosci. Technol.
7
,
15
22
(
2017
).
130.
D.
Saha
and
S.
Bhattacharya
, “
Hydrocolloids as thickening and gelling agents in food: A critical review
,”
J. Food Sci. Technol.
47
,
587
597
(
2010
).
131.
G.
Sworn
, “
Xanthan gum
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2021
), pp.
833
853
.
132.
B.
Ebrahimi
,
A.
Homayouni Rad
,
B.
Ghanbarzadeh
,
M.
Torbati
, and
P. M.
Falcone
, “
The emulsifying and foaming properties of Amuniacum gum (Dorema ammoniacum) in comparison with gum Arabic
,”
Food Sci. Nutr.
8
,
3716
3730
(
2020
).
133.
E.
Dauqan
and
A.
Abdullah
, “
Utilization of gum Arabic for industries and human health
,”
Am. J. Appl. Sci.
10
,
1270
(
2013
).
134.
F.
Mohos
,
Confectionery and Chocolate Engineering
(
Wiley Online Library
,
2016
).
135.
F.
Thevenet
, “
Acacia gum (gum Arabic)
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
11
30
.
136.
P. A.
Williams
and
G. O.
Phillips
, “
Gum Arabic
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2021
), pp.
627
652
.
137.
C.
Schmitt
,
E.
Kolodziejczyk
, and
M. E.
Leser
, “
Interfacial and foam stabilization properties of b-lactoglobulin e acacia gum electrostatic complexes
,” in
Food Colloids: Interactions, Microstructure and Processing
(
RSC
,
2005
), pp.
289
300
.
138.
C.
Sanchez
,
D.
Renard
,
P.
Robert
,
C.
Schmitt
, and
J.
Lefebvre
, “
Structure and rheological properties of acacia gum dispersions
,”
Food Hydrocolloids
16
,
257
267
(
2002
).
139.
A. M.
Stephen
and
G. O.
Phillips
,
Food Polysaccharides and Their Applications
(
CRC Press
,
2016
).
140.
D.
Le Cerf
,
F.
Irinei
, and
G.
Muller
, “
Solution properties of gum exudates from sterculia urens (karaya gum)
,”
Carbohydr. Polym.
13
,
375
386
(
1990
).
141.
Y.
López-Franco
,
I.
Higuera-Ciapara
,
J.
Lizardi-Mendoza
,
W.
Wang
, and
F.
Goycoolea
, “
Other exudates: Tragacanth, karaya, mesquite gum, and larchwood arabinogalactane
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2021
), pp.
673
727
.
142.
J. M.
Mayes
, “
Gum tragacanth and karaya
,” in
Food Stabilisers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
167
179
.
143.
T.
Truong
,
M.
Palmer
,
N.
Bansal
, and
B.
Bhandari
,
Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products
(
Springer
,
2016
).
144.
M.
Mohammadian
and
F.
Alavi
, “
The effects of Iranian gum tragacanth on the foaming properties of egg white proteins in comparison with guar and xanthan gums
,”
J. Food Biosci. Technol.
6
,
59
68
(
2016
).
145.
M. S.
Sadahira
,
M. I.
Rodrigues
,
M.
Akhtar
,
B. S.
Murray
, and
F. M.
Netto
, “
Effect of egg white protein-pectin electrostatic interactions in a high sugar content system on foaming and foam rheological properties
,”
Food Hydrocolloids
58
,
1
10
(
2016
).
146.
H.-U.
Endress
and
S.
Christensen
, “
Pectins
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
274
297
.
147.
S. M.
Brejnholt
, “
Pectin
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
237
265
.
148.
P.
Ptaszek
,
M.
Kabziński
,
J.
Kruk
,
K.
Kaczmarczyk
,
D.
Żmudziński
,
M.
Liszka-Skoczylas
,
B.
Mickowska
,
M.
Łukasiewicz
, and
J.
Banaś
, “
The effect of pectins and xanthan gum on physicochemical properties of egg white protein foams
,”
J. Food Eng.
144
,
129
137
(
2015
).
149.
M.
Jarpa-Parra
,
Z.
Tian
,
F.
Temelli
,
H.
Zeng
, and
L.
Chen
, “
Understanding the stability mechanisms of lentil legumin-like protein and polysaccharide foams
,”
Food Hydrocolloids
61
,
903
913
(
2016
).
150.
M. S.
Izydorczyk
, “
Arabinoxylans
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2021
), pp.
399
461
.
151.
C. G.
Biliaderis
,
M. S.
Izydorczyk
, and
O.
Rattan
, “
Effect of arabinoxylans on bread-making quality of wheat flours
,”
Food Chem.
53
,
165
171
(
1995
).
152.
B.
Damen
,
A.
Pollet
,
E.
Dornez
,
W. F.
Broekaert
,
I.
Van Haesendonck
,
I.
Trogh
,
F.
Arnaut
,
J. A.
Delcour
, and
C. M.
Courtin
, “
Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials
,”
Food Chem.
131
,
111
118
(
2012
).
153.
M. J.
Cash
and
S. J.
Caputo
, “
Cellulose derivatives
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
95
115
.
154.
M.
Hossain
,
S.
Mitra
,
M.
Belal
, and
W.
Zzaman
, “
Effect of foaming agent concentration and drying temperature on biochemical properties of foam mat dried tomato powder
,”
Food Res.
5
,
291
297
(
2021
).
155.
G.
Jackson
,
R.
Roberts
, and
T.
Wainwright
, “
Mechanism of beer foam stabilization by propylene glycol alginate
,”
J. Inst. Brewing
86
,
34
37
(
1980
).
156.
T.
Wüstenberg
,
Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications
(
John Wiley & Sons
,
2014
).
157.
J.
Murray
, “
Cellulosics
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
710
723
.
158.
I.
Burešová
,
L.
Masaříková
,
L.
Hřivna
,
S.
Kulhanová
, and
D.
Bureš
, “
The comparison of the effect of sodium caseinate, calcium caseinate, carboxymethyl cellulose and xanthan gum on rice-buckwheat dough rheological characteristics and textural and sensory quality of bread
,”
LWT-Food Sci. Technol.
68
,
659
666
(
2016
).
159.
C.
McIntyre
, “
Hydroxypropylcellulose (HPC)
,” in
Food Hydrocolloids
(
CRC Press
,
2020
), pp.
111
120
.
160.
G. O.
Phillips
and
P. A.
Williams
,
Gums and Stabilisers for the Food Industry
(
Royal Society of Chemistry
,
2009
), Vol.
12
.
161.
S.
Lee
 et al, “
Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins
,”
Food Hydrocolloids
77
,
796
802
(
2018
).
162.
J. A.
Grover
, “
Methylcellulose (mc) and hydroxypropylmethylcellulose (HPMC)
,” in
Food Hydrocolloids
(
CRC Press
,
2020
), pp.
121
154
.
163.
W. R.
Thomas
, “
Microcrystalline cellulose (MCC or cellulose gel
),”
Food Hydrocolloids
3
,
9
42
(
1984
).
164.
G.
Krawczyk
,
A.
Venables
, and
D.
Tuason
, “
Microcrystalline cellulose
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
740
759
.
165.
A.
Imeson
, “
Agar
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
31
49
.
166.
R.
Armisen
and
F.
Gaiatas
, “
Agar
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
82
107
.
167.
A.
Ellis
,
A.
Norton
,
T.
Mills
, and
I.
Norton
, “
Stabilisation of foams by agar gel particles
,”
Food Hydrocolloids
73
,
222
228
(
2017
).
168.
T.
Helgerud
,
O.
Gaserod
,
T.
Fjæreide
,
P.
Andersen
, and
C.
Larsen
, “
Alginate
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
50
72
.
169.
K. I.
Draget
, “
Alginates
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
807
828
.
170.
F. L.
Schmidt
,
A.
Sebastian
,
R.
Tamayo
, and
A. D.
de Brito
, “
Hydrocolloids as beers foam stabilizer
,”
Afr. J. Food Sci.
14
,
143
153
(
2020
).
171.
P.
Dhungana
and
B.
Bhandari
, “
Dairy creams and related products
,” in
Dairy Fat Products and Functionality
(
Springer
,
2020
), pp.
431
452
.
172.
Y.
Qin
,
J.
Jiang
,
L.
Zhao
,
J.
Zhang
, and
F.
Wang
, “
Applications of alginate as a functional food ingredient
,” in
Biopolymers for Food Design
(
Elsevier
,
2018
), pp.
409
429
.
173.
W. R.
Blakemore
and
A. R.
Harpell
, “
Carrageenan
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
73
94
.
174.
A. M.
Ghribi
,
M.
Zouari
,
H.
Attia
, and
S.
Besbes
, “
Study of protein/k-carrageenan mixture's effect on low-fat whipping cream formulation
,”
LWT
147
,
111647
(
2021
).
175.
M.
Camacho
,
N.
Martinez-Navarrete
, and
A.
Chiralt
, “
Stability of whipped dairy creams containing locust bean gum/λ-carrageenan mixtures during freezing–thawing processes
,”
Food Res. Int.
34
,
887
894
(
2001
).
176.
W.
Wielinga
, “
Seed gums
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
275
292
.
177.
W.
Wielinga
, “
Galactomannans
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
228
251
.
178.
F.
Javidi
,
S. M.
Razavi
,
F.
Behrouzian
, and
A.
Alghooneh
, “
The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low fat ice cream
,”
Food Hydrocolloids
52
,
625
633
(
2016
).
179.
D.
Mudgil
,
S.
Barak
, and
B. S.
Khatkar
, “
Guar gum: Processing, properties and food applications—A review
,”
J. Food Sci. Technol.
51
,
409
418
(
2014
).
180.
C. T.
Herald
, “
Guar gum
,” in
Food Hydrocolloids
(
CRC Press
,
2020
), pp.
171
184
.
181.
I.
Schmidt
,
B.
Novales
,
F.
Boué
, and
M. A.
Axelos
, “
Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale
,”
J. Colloid Interface Sci.
345
,
316
324
(
2010
).
182.
M.
Camacho
,
N.
Mart inez-Navarrete
, and
A.
Chiralt
, “
Influence of locust bean gum/λ-carrageenan mixtures on whipping and mechanical properties and stability of dairy creams
,”
Food Res. Int.
31
,
653
658
(
1998
).
183.
M.
Glicksman
, “
Tamarind seed gum
,” in
Food Hydrocolloids
(
CRC Press
,
2020
), pp.
191
202
.
184.
M.
Glicksman
, “
Tara gum
,” in
Food Hydrocolloids
(
CRC Press
,
2020
), pp.
185
189
.
185.
J.-M.
Parry
, “
Konjac glucomannan
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
198
217
.
186.
S.
Takigami
, “
Konjac mannan
,” in
Handbook of Hydrocolloids
(
Elsevier
,
2009
), pp.
889
901
.
187.
P.
Sheldrake
, “
Starch
,” in
Food Stabilizers, Thickeners and Gelling Agents
(
Wiley-Blackwell
,
2009
), pp.
293
324
.
188.
C.
Onyango
, “
Starch and modified starch in bread making: A review
,”
Afr. J. Food Sci.
10
,
344
351
(
2016
).
189.
S. A.
Korma
,
S.
Niazi
,
A.-F.
Ammar
,
F.
Zaaboul
,
T.
Zhang
 et al, “
Chemically modified starch and utilization in food stuffs
,”
Int. J. Nutr. Food Sci.
5
,
264
(
2016
).
190.
J. F.
Swindells
,
Viscosities of Sucrose Solutions at Various Temperatures: Tables of Recalculated Values
(
U.S. Government Printing Office
,
1958
), Vol.
440
.
191.
A.
Verbon
, “
Why dalgona (whipped) coffee is so foamy
,” Food Crumbles (
2020
).
192.
P. C. S. F.
Tischer
,
M. D.
Noseda
,
R. A.
de Freitas
,
M. R.
Sierakowski
, and
M. E. R.
Duarte
, “
Effects of iota-carrageenan on the rheological properties of starches
,”
Carbohydr. Polym.
65
,
49
57
(
2006
).
193.
International Food Information Council
, “
IFIC Survey: From ‘chemical-sounding’ to ‘Clean’: Consumer perspectives on food ingredients
,” Food Insight (
2021
).
194.
ATLAS Proprietary Consumer Research
, “
Clean label global growth report
,” Ingredion (
2021
).
195.
D.
Seisun
and
N.
Zalesny
, “
Strides in food texture and hydrocolloids
,”
Food Hydrocolloids
117
,
106575
(
2021
).
196.
A.
Diantom
,
F.
Boukid
,
E.
Carini
,
E.
Curti
, and
E.
Vittadini
, “
Can potato fiber efficiently substitute xanthan gum in modulating chemical properties of tomato products?
,”
Food Hydrocolloids
101
,
105508
(
2020
).
197.
D. J.
McClements
, “
Non-covalent interactions between proteins and polysaccharides
,”
Biotechnol. Adv.
24
,
621
625
(
2006
).
198.
E.
Dickinson
and
E.
Izgi
, “
Foam stabilization by protein-polysaccharide complexes
,”
Colloids Surf. A
113
,
191
201
(
1996
).
199.
R. A.
Ganzevles
,
M. A. C.
Stuart
,
T.
van Vliet
, and
H. H.
de Jongh
, “
Use of polysaccharides to control protein adsorption to the air–water interface
,”
Food Hydrocolloids
20
,
872
878
(
2006
).
200.
X.
Zhu
,
F.
Zhan
,
Y.
Zhao
,
Y.
Han
,
X.
Chen
, and
B.
Li
, “
Improved foaming properties and interfacial observation of sodium caseinate-based complexes: Effect of carboxymethyl cellulose
,”
Food Hydrocolloids
105
,
105758
(
2020
).
201.
P.
Hansen
and
D.
Black
, “
Whipping properties of spray-dried complexes from whey protein and carboxymethylcellulose
,”
J. Food Sci.
37
,
452
456
(
1972
).
202.
M.
Ahmed
and
E.
Dickinson
, “
Foaming of aqueous solutions of protein + propylene glycol alginate
,”
Food Hydrocolloids
4
,
395
402
(
1991
).
203.
L.
Glaser
,
A.
Paulson
,
R.
Speers
,
R.
Yada
, and
D.
Rousseau
, “
Foaming behavior of mixed bovine serum albumin–protamine systems
,”
Food Hydrocolloids
21
,
495
506
(
2007
).
204.
P.
Hansen
,
J.
Hidalgo
, and
I.
Gould
, “
Reclamation of whey protein with carboxymethylcellulose
,”
J. Dairy Sci.
54
,
830
834
(
1971
).
205.
S.
Poole
, “
The foam-enhancing properties of basic biopolymers
,”
Int. J. Food Sci. Technol.
24
,
121
137
(
2007
).
206.
C.
Schmitt
and
E.
Kolodziejczky
, “
Protein-polysaccharide complexes: From basics to food applications
,” in
Gums and Stabilisers for the Food Industry
(
Elsevier
,
2009
), Vol.
15
, pp.
211
222
.
207.
C.
Sanchez
,
M.
Pouliot
,
S.
Gauthier
, and
P.
Paquin
, “
Thermal aggregation of whey protein isolate containing microparticulated or hydrolyzed whey proteins
,”
J. Agric. Food Chem.
45
,
2384
2392
(
1997
).
208.
C.
Schmitt
,
C.
Sanchez
,
S.
Desobry-Banon
, and
J.
Hardy
, “
Structure and technofunctional properties of protein-polysaccharide complexes: A review
,”
Crit. Rev. Food Sci. Nutr.
38
,
689
753
(
1998
).
209.
I.
Norton
and
W.
Frith
, “
Microstructure design in mixed biopolymer composites
,”
Food Hydrocolloids
15
,
543
553
(
2001
).
210.
S. L.
Turgeon
and
S. I.
Laneuville
, “
Protein+ polysaccharide coacervates and complexes: From scientific background to their application as functional ingredients in food products
,” in
Modern Biopolymer Science
(
Elsevier
,
2009
), pp.
327
363
.
211.
E.
Kolodziejczyk
and
C.
Schmitt
, “
Interface stabilisation of a product with 2 or more phases with a protein-polysaccharide complex
,”
U.S. patent application 10/529,245
(30 March
2006
).
212.
S. I.
Laneuville
,
P.
Paquin
, and
S. L.
Turgeon
, “
Formula optimization of a low-fat food system containing whey protein isolate-xanthan gum complexes as fat replacer
,”
J. Food Sci.
70
,
s513
s519
(
2005
).
213.
C.
Capitani
,
O. E.
Pérez
,
B.
Pacheco
,
M.
Teresa
, and
A. M.
Pilosof
, “
Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin
,”
Food Hydrocolloids
21
,
1344
1354
(
2007
).
214.
E.
Dickinson
and
K.
Pawlowsky
, “
Effect of ι-carrageenan on flocculation, creaming, and rheology of a protein-stabilized emulsion
,”
J. Agric. Food Chem.
45
,
3799
3806
(
1997
).
215.
E. V.
Kudryashova
,
A. J.
Visser
,
A.
van Hoek
, and
H. H.
de Jongh
, “
Molecular details of ovalbumin-pectin complexes at the air/water interface: A spectroscopic study
,”
Langmuir
23
,
7942
7950
(
2007
).
216.
H. D.
Goff
, “
Colloidal aspects of ice cream—A review
,”
Int. Dairy J.
7
,
363
373
(
1997
).
217.
J. F.
Crilly
,
A. B.
Russell
,
A. R.
Cox
, and
D. J.
Cebula
, “
Designing multiscale structures for desired properties of ice cream
,”
Ind. Eng. Chem. Res.
47
,
6362
6367
(
2008
).
218.
A. R.
Patel
, “
Oil structuring in dairy fat products
,” in
Dairy Fat Products and Functionality
(
Springer
,
2020
), pp.
307
325
.
219.
K. S.
Minhas
,
J. S.
Sidhu
,
G. S.
Mudahar
, and
A.
Singh
, “
Flow behavior characteristics of ice cream mix made with buffalo milk and various stabilizers
,”
Plant Foods Human Nutr.
57
,
25
40
(
2002
).
220.
S.
El-Samahy
,
K.
Youssef
, and
T.
Moussa-Ayoub
, “
Producing ice cream with concentrated cactus pear pulp: A preliminary study
,”
J. Professional Assoc. Cactus Develop.
11
,
1
12
(
2009
).
221.
W. S.
Arbuckle
,
Ice Cream
(
Springer
,
2013
).
222.
M. C.
Milliatti
and
S. C.
da Silva Lannes
, “
Impact of stabilizers on the rheological properties of ice creams
,”
Food Sci. Technol.
38
,
733
739
(
2018
).
223.
R. C.
Chandan
,
A.
Kilara
, and
N. P.
Shah
,
Dairy Processing and Quality Assurance
(
John Wiley & Sons
,
2009
).
224.
C.
Clarke
,
The Science of Ice Cream
(
Royal Society of Chemistry
,
2015
).
225.
M.
Golding
and
E.
Pelan
, “
Application of emulsifiers to reduce fat and enhance nutritional quality
,” in
Food Emulsifiers and Their Applications
(
Springer
,
2019
), pp.
407
434
.
226.
M.
Bahramparvar
and
M.
Mazaheri Tehrani
, “
Application and functions of stabilizers in ice cream
,”
Food Rev. Int.
27
,
389
407
(
2011
).
227.
H. D.
Goff
and
R. W.
Hartel
,
Ice Cream
(
Springer Science & Business Media
,
2013
).
228.
Q.
Zhao
,
M.
Zhao
,
B.
Yang
, and
C.
Cui
, “
Effect of xanthan gum on the physical properties and textural characteristics of whipped cream
,”
Food Chem.
116
,
624
628
(
2009
).
229.
K.
Heinz
, “
Cool whip extra creamy whipped topping
” (
2021
).
230.
R.
Wip
, “
Dairy whipped topping, original
” (
2021
).
231.
H.
This
, “
Molecular gastronomy
,”
Angew. Chem. Int. Ed.
41
,
83
88
(
2002
).
232.
A.
Nussinovitch
, “
Xanthan gum
,” in
Hydrocolloid Applications
(
Springer
,
1997
), pp.
154
168
.
233.
R.
Kováčová
,
J.
Štětina
, and
L.
Čurda
, “
Influence of processing and κ-carrageenan on properties of whipping cream
,”
J. Food Eng.
99
,
471
478
(
2010
).
234.
T. M.
Ho
,
B.
Bhandari
, and
N.
Bansal
, “
Influence of milk fat on foam formation, foam stability and functionality of aerated dairy products
,” in
Dairy Fat Products and Functionality
(
Springer
,
2020
), pp.
583
606
.
235.
G.
Kyazze
and
V.
Starov
, “
Viscosity of milk: Influence of cluster formation
,”
Colloid J.
66
,
316
321
(
2004
).
236.
Q. A.
Syed
,
S.
Anwar
,
R.
Shukat
, and
T.
Zahoor
, “
Effects of different ingredients on texture of ice cream
,”
J. Nutr. Health Food Eng.
8
,
422
435
(
2018
).
237.
J.
Briggs
,
J.
Steffe
, and
Z.
Ustunol
, “
Vane method to evaluate the yield stress of frozen ice cream
,”
J. Dairy Sci.
79
,
527
531
(
1996
).
238.
A.
Lazidis
,
R.
Hancocks
,
F.
Spyropoulos
,
M.
Kreuß
,
R.
Berrocal
, and
I.
Norton
, “
Whey protein fluid gels for the stabilisation of foams
,”
Food Hydrocolloids
53
,
209
217
(
2016
).
239.
A.
Ellis
,
T.
Mills
,
I.
Norton
, and
A.
Norton-Welch
, “
The effect of sugars on agar fluid gels and the stabilisation of their foams
,”
Food Hydrocolloids
87
,
371
381
(
2019
).
240.
D. A.
Garrec
,
B.
Guthrie
, and
I. T.
Norton
, “
Kappa carrageenan fluid gel material properties. Part 1: Rheology
,”
Food Hydrocolloids
33
,
151
159
(
2013
).
241.
G.
Cassin
,
I.
Appelqvist
,
V.
Normand
, and
I.
Norton
, “
Stress-induced compaction of concentrated dispersions of gel particles
,”
Colloid Polym. Sci.
278
,
777
782
(
2000
).
242.
D. A.
Garrec
,
S.
Frasch-Melnik
,
J. V.
Henry
,
F.
Spyropoulos
, and
I. T.
Norton
, “
Designing colloidal structures for micro and macro nutrient content and release in foods
,”
Faraday Discuss.
158
,
37
49
(
2012
).
243.
S.
Holland
,
C.
Tuck
, and
T.
Foster
, “
Fluid gels: A new feedstock for high viscosity jetting
,”
Food Biophys.
13
,
175
185
(
2018
).
244.
W.
de Carvalho
and
M.
Djabourov
, “
Physical gelation under shear for gelatin gels
,”
Rheol. Acta
36
,
591
609
(
1997
).
245.
W.
Chalupa
and
G.
Sanderson
, “
No-fat gellan gum spread
,”
Trends Food Sci. Technol.
5
,
177
(
1997
).
246.
M.
García
,
M.
Alfaro
, and
J.
Muñoz
, “
Yield stress and onset of nonlinear time-dependent rheological behaviour of gellan fluid gels
,”
J. Food Eng.
159
,
42
47
(
2015
).
247.
I.
Norton
,
T.
Foster
, and
R.
Brown
, “
The science and technology of fluid gels
,” in
Gums and Stabilisers for the Food Industry
(
Elsevier
,
1998
), Vol.
9
, pp.
259
268
.
248.
I.
Norton
,
C.
Smith
,
W.
Frith
, and
T.
Foster
, “
The production, properties and utilisation of fluid gels
,” in
Hydrocolloids
(
Elsevier
,
2000
), pp.
219
227
.
249.
D. A.
Garrec
and
I. T.
Norton
, “
Understanding fluid gel formation and properties
,”
J. Food Eng.
112
,
175
182
(
2012
).
250.
P.
Young
,
T.
Mills
, and
I.
Norton
, “
Influence of pH on fluid gels produced from egg and whey protein isolate
,”
Food Hydrocolloids
111
,
106108
(
2021
).
251.
R.
Moakes
,
A.
Sullo
, and
I.
Norton
, “
Preparation and characterisation of whey protein fluid gels: The effects of shear and thermal history
,”
Food Hydrocolloids
45
,
227
235
(
2015
).
252.
A.
Lazidis
, “
Stabilisation of foams by particulate structures
,” Ph.D. thesis (
University of Birmingham
,
2017
).
253.
A.
Ellis
,
T.
Mills
,
I.
Norton
, and
A.
Norton-Welch
, “
The hydrophobic modification of kappa carrageenan microgel particles for the stabilisation of foams
,”
J. Colloid Interface Sci.
538
,
165
173
(
2019
).
254.
E.
Dickinson
,
R.
Ettelaie
,
T.
Kostakis
, and
B. S.
Murray
, “
Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles
,”
Langmuir
20
,
8517
8525
(
2004
).
255.
S.
Friberg
and
H.
Saito
, “
Foam stability and association of surfactants
,” in
Foams
(
Academic Press
,
1976
), pp.
31
34
.
256.
F.
Carn
,
A.
Colin
,
O.
Pitois
,
M.
Vignes-Adler
, and
R.
Backov
, “
Foam drainage in the presence of nanoparticle-surfactant mixtures
,”
Langmuir
25
,
7847
7856
(
2009
).
257.
S.
Guignot
,
S.
Faure
,
M.
Vignes-Adler
, and
O.
Pitois
, “
Liquid and particles retention in foamed suspensions
,”
Chem. Eng. Sci.
65
,
2579
2585
(
2010
).
258.
I.
Lesov
,
S.
Tcholakova
, and
N.
Denkov
, “
Factors controlling the formation and stability of foams used as precursors of porous materials
,”
J. Colloid Interface Sci.
426
,
9
21
(
2014
).
259.
E.
Rio
,
W.
Drenckhan
,
A.
Salonen
, and
D.
Langevin
, “
Unusually stable liquid foams
,”
Adv. Colloid Interface Sci.
205
,
74
86
(
2014
).
260.
A.
Lazidis
,
L.
de Almeida Parizotto
,
F.
Spyropoulos
, and
I.
Norton
, “
Microstructural design of aerated food systems by soft-solid materials
,”
Food Hydrocolloids
73
,
110
119
(
2017
).
261.
A.-L.
Fameau
and
B. P.
Binks
, “
Aqueous and oil foams stabilized by surfactant crystals: New concepts and perspectives
,”
Langmuir
37
,
4411
4418
(
2021
).
262.
S.
Mishima
,
A.
Suzuki
,
K.
Sato
, and
S.
Ueno
, “
Formation and microstructures of whipped oils composed of vegetable oils and high-melting fat crystals
,”
J. Am. Oil Chem. Soc.
93
,
1453
1466
(
2016
).
263.
B. P.
Binks
,
E. J.
Garvey
, and
J.
Vieira
, “
Whipped oil stabilised by surfactant crystals
,”
Chem. Sci.
7
,
2621
2632
(
2016
).
264.
S. E.
Friberg
,
C. S.
Wohn
,
B.
Greene
, and
R.
Van Gilder
, “
A nonaqueous foam with excellent stability
,”
J. Colloid Interface Sci.
101
,
593
595
(
1984
).
265.
B. P.
Binks
,
A.
Rocher
, and
M.
Kirkland
, “
Oil foams stabilised solely by particles
,”
Soft Matter
7
,
1800
1808
(
2011
).
266.
B. P.
Binks
and
B.
Vishal
, “
Particle-stabilized oil foams
,”
Adv. Colloid Interface Sci.
291
,
102404
(
2021
).
267.
Z.
Zhang
,
J. L.
Provis
,
A.
Reid
, and
H.
Wang
, “
Geopolymer foam concrete: An emerging material for sustainable construction
,”
Constr. Build. Mater.
56
,
113
127
(
2014
).
268.
A.
Raj
,
D.
Sathyan
, and
K.
Mini
, “
Physical and functional characteristics of foam concrete: A review
,”
Constr. Build. Mater.
221
,
787
799
(
2019
).
269.
B.
Feneuil
,
N.
Roussel
, and
O.
Pitois
, “
Optimal cement paste yield stress for the production of stable cement foams
,”
Cem. Concr. Res.
120
,
142
151
(
2019
).
270.
B.
Feneuil
,
P.
Aimedieu
,
M.
Scheel
,
J.
Perrin
,
N.
Roussel
, and
O.
Pitois
, “
Stability criterion for fresh cement foams
,”
Cem. Concr. Res.
125
,
105865
(
2019
).
271.
K.
Dhasindrakrishna
,
K.
Pasupathy
,
S.
Ramakrishnan
, and
J.
Sanjayan
, “
Effect of yield stress development on the foam-stability of aerated geopolymer concrete
,”
Cem. Concr. Res.
138
,
106233
(
2020
).
272.
F.
Gorlier
,
Y.
Khidas
, and
O.
Pitois
, “
Coupled elasticity in soft solid foams
,”
J. Colloid Interface Sci.
501
,
103
111
(
2017
).
273.
F.
Gorlier
,
Y.
Khidas
, and
O.
Pitois
, “
Yielding of complex liquid foams
,”
J. Rheol.
61
,
919
3930
(
2017
).
274.
M.
Kogan
,
L.
Ducloué
,
J.
Goyon
,
X.
Chateau
,
O.
Pitois
, and
G.
Ovarlez
, “
Mixtures of foam and paste: Suspensions of bubbles in yield stress fluids
,”
Rheol. Acta
52
,
237
253
(
2013
).
275.
M.
Marchand
,
F.
Restagno
,
E.
Rio
, and
F.
Boulogne
, “
Roughness-induced friction in liquid foams
,”
Phys. Rev. Lett.
124
,
118003
(
2020
).
276.
N.
Ramesh
,
D. H.
Rasmussen
, and
G. A.
Campbell
, “
Numerical and experimental studies of bubble growth during the microcellular foaming process
,”
Polym. Eng. Sci.
31
,
1657
1664
(
1991
).
277.
A.
Bals
and
U.
Kulozik
, “
The influence of the pore size, the foaming temperature and the viscosity of the continuous phase on the properties of foams produced by membrane foaming
,”
J. Membr. Sci.
220
,
5
11
(
2003
).
278.
Y.
Otsuki
and
T.
Kanai
, “
Numerical simulation of bubble growth in viscoelastic fluid with diffusion of dissolved foaming agent
,”
Polym. Eng. Sci.
45
,
1277
1287
(
2005
).
279.
S. N.
Leung
,
C. B.
Park
,
D.
Xu
,
H.
Li
, and
R. G.
Fenton
, “
Computer simulation of bubble-growth phenomena in foaming
,”
Ind. Eng. Chem. Res.
45
,
7823
7831
(
2006
).
280.
J. A.
Reglero Ruiz
,
M.
Vincent
,
J.-F.
Agassant
,
T.
Sadik
,
C.
Pillon
, and
C.
Carrot
, “
Polymer foaming with chemical blowing agents: Experiment and modeling
,”
Polym. Eng. Sci.
55
,
2018
2029
(
2015
).
281.
M.
Safouane
,
M.
Durand
,
A.
Saint Jalmes
,
D.
Langevin
, and
V.
Bergeron
, “
Aqueous foam drainage. Role of the rheology of the foaming fluid
,”
J. Phys. IV
11
,
Pr6-275
280
(
2001
).
282.
A.-L.
Fameau
and
A.
Salonen
, “
Effect of particles and aggregated structures on the foam stability and aging
,”
C. R. Phys.
15
,
748
760
(
2014
).
283.
A.-L.
Fameau
,
A.
Saint-Jalmes
,
F.
Cousin
,
B.
Houinsou Houssou
,
B.
Novales
,
L.
Navailles
,
F.
Nallet
,
C.
Gaillard
,
F.
Boué
, and
J.-P.
Douliez
, “
Smart foams: Switching reversibly between ultrastable and unstable foams
,”
Angew. Chem. Int. Ed.
50
,
8264
8269
(
2011
).
284.
Z.
Briceño-Ahumada
and
D.
Langevin
, “
On the influence of surfactant on the coarsening of aqueous foams
,”
Adv. Colloid Interface Sci.
244
,
124
131
(
2017
).
285.
J.
Ferreira
,
A.
Mikhailovskaya
,
A.
Chenneviere
,
F.
Restagno
,
F.
Cousin
,
F.
Muller
,
J.
Degrouard
,
A.
Salonen
, and
E. F.
Marques
, “
Interplay between bulk self-assembly, interfacial and foaming properties in a catanionic surfactant mixture of varying composition
,”
Soft Matter
13
,
7197
7206
(
2017
).
286.
D.
Daugelaite
,
R.-M.
Guillermic
,
M.
Scanlon
, and
J.
Page
, “
Quantifying liquid drainage in egg-white sucrose foams by resistivity measurements
,”
Colloids Surf. A
489
,
241
248
(
2016
).
287.
I.
Lesov
,
S.
Tcholakova
,
M.
Kovadjieva
,
T.
Saison
,
M.
Lamblet
, and
N.
Denkov
, “
Role of pickering stabilization and bulk gelation for the preparation and properties of solid silica foams
,”
J. Colloid Interface Sci.
504
,
48
57
(
2017
).
288.
A.
Mikhailovskaya
,
V.
Trappe
, and
A.
Salonen
, “
Colloidal gelation, a means to study elasto-capillarity effects in foam
,”
Soft Matter
16
,
2249
2255
(
2020
).
289.
L.
Ma
,
Q.
Li
,
Z.
Du
,
E.
Su
,
X.
Liu
,
Z.
Wan
, and
X.
Yang
, “
A natural supramolecular saponin hydrogelator for creation of ultrastable and thermostimulable food-grade foams
,”
Adv. Mater. Interfaces
6
,
1900417
(
2019
).
290.
A.
Webster
and
M.
Cates
, “
Osmotic stabilization of concentrated emulsions and foams
,”
Langmuir
17
,
595
608
(
2001
).
291.
M.
Schneider
, “
Stabilité et rhéologie des mousses d'émulsions attractives
,” Ph.D. thesis (
Université Paris-Saclay (ComUE)
,
2018
).
292.
M.
Buchanan
, “
Liquid crystal foams: Formation and coarsening
,” arXiv:cond-mat/0206477 (
2002
).
293.
T.
Trittel
,
T.
John
, and
R.
Stannarius
, “
Smectic foams
,”
Langmuir
26
,
7899
7904
(
2010
).
294.
N.
Vandewalle
and
J.
Lentz
, “
Cascades of popping bubbles along air/foam interfaces
,”
Phys. Rev. E
64
,
021507
(
2001
).
295.
D.
Monin
,
A.
Espert
, and
A.
Colin
, “
A new analysis of foam coalescence: From isolated films to three-dimensional foams
,”
Langmuir
16
,
3873
3883
(
2000
).
296.
J.
Bibette
,
D. C.
Morse
,
T.
Witten
, and
D.
Weitz
, “
Stability criteria for emulsions
,”
Phys. Rev. Lett.
69
,
2439
(
1992
).
297.
K.
Khristov
,
D.
Exerowa
, and
G.
Minkov
, “
Critical capillary pressure for destruction of single foam films and foam: Effect of foam film size
,”
Colloids Surf. A
210
,
159
166
(
2002
).
298.
E.
Chatzigiannakis
and
J.
Vermant
, “
Breakup of thin liquid films: From stochastic to deterministic
,”
Phys. Rev. Lett.
125
,
158001
(
2020
).
299.
E.
Forel
,
B.
Dollet
,
D.
Langevin
, and
E.
Rio
, “
Coalescence in two-dimensional foams: A purely statistical process dependent on film area
,”
Phys. Rev. Lett.
122
,
088002
(
2019
).
300.
V.
Carrier
and
A.
Colin
, “
Coalescence in draining foams
,”
Langmuir
19
,
4535
4538
(
2003
).
301.
A. L.
Biance
,
A.
Delbos
, and
O.
Pitois
, “
How topological rearrangements and liquid fraction control liquid foam stability
,”
Phys. Rev. Lett.
106
,
068301
(
2011
).
302.
Z.
Briceño-Ahumada
,
W.
Drenckhan
, and
D.
Langevin
, “
Coalescence in draining foams made of very small bubbles
,”
Phys. Rev. Lett.
116
,
128302
(
2016
).
303.
D.
Weaire
,
S.
Hutzler
,
S.
Cox
,
N.
Kern
,
M. D.
Alonso
, and
W.
Drenckhan
, “
The fluid dynamics of foams
,”
J. Phys.: Condens. Matter
15
,
S65
(
2003
).
304.
M.
Durand
and
H. A.
Stone
, “
Relaxation time of the topological T1 process in a two-dimensional foam
,”
Phys. Rev. Lett.
97
,
226101
(
2006
).
305.
A.-L.
Biance
,
S.
Cohen-Addad
, and
R.
Höhler
, “
Topological transition dynamics in a strained bubble cluster
,”
Soft Matter
5
,
4672
4679
(
2009
).
306.
I.
Cantat
, “
Gibbs elasticity effect in foam shear flows: A non-quasi-static 2d numerical simulation
,”
Soft Matter
7
,
448
455
(
2011
).
307.
P.
Grassia
,
B.
Embley
, and
C.
Oguey
, “
A Princen hexagonal foam out of physicochemical equilibrium
,”
J. Rheol.
56
,
501
526
(
2012
).
308.
C.
Raufaste
,
S.
Cox
,
P.
Marmottant
, and
F.
Graner
, “
Discrete rearranging disordered patterns: Prediction of elastic and plastic behavior, and application to two-dimensional foams
,”
Phys. Rev. E
81
,
031404
(
2010
).
309.
F.
Zaccagnino
and
S.
Cox
, “
Micro-mechanical prediction of the effect of surfactant concentration and external friction on the visco-elasto-plastic response of an aqueous foam
,”
Soft Matter
16
,
8861
8870
(
2020
).
310.
S.
Cohen-Addad
and
R.
Höhler
, “
Rheology of foams and highly concentrated emulsions
,”
Curr. Opinion Colloid Interface Sci.
19
,
536
548
(
2014
).
311.
B.
Dollet
and
C.
Raufaste
, “
Rheology of aqueous foams
,”
C. R. Phys.
15
,
731
747
(
2014
).
312.
A.
Bussonnière
and
I.
Cantat
, “
Local origin of the visco-elasticity of a millimetric elementary foam
,”
J. Fluid Mech.
922
,
A25
(
2021
).
313.
H.
Princen
, “
Rheology of foams and highly concentrated emulsions: I. Elastic properties and yield stress of a cylindrical model system
,”
J. Colloid Interface Sci.
91
,
160
175
(
1983
).
314.
G.
Ovarlez
,
S.
Cohen-Addad
,
K.
Krishan
,
J.
Goyon
, and
P.
Coussot
, “
On the existence of a simple yield stress fluid behavior
,”
J. Non-Newtonian Fluid Mech.
193
,
68
79
(
2013
).
315.
A.
Gopal
and
D.
Durian
, “
Shear-induced ‘melting’ of an aqueous foam
,”
J. Colloid Interface Sci.
213
,
169
178
(
1999
).
316.
M. L.
Merrer
,
S.
Cohen-Addad
, and
R.
Höhler
, “
Bubble rearrangement duration in foams near the jamming point
,”
Phys. Rev. Lett.
108
,
188301
(
2012
).
317.
M. L.
Merrer
,
S.
Cohen-Addad
, and
R.
Höhler
, “
Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: Impact of interfacial rigidity
,”
Phys. Rev. E
88
,
022303
(
2013
).
318.
A.
Saint-Jalmes
and
D. J.
Durian
, “
Vanishing elasticity for wet foams: Equivalence with emulsions and role of polydispersity
,”
J. Rheol.
43
,
1411
1422
(
1999
).
319.
F.
Rouyer
,
S.
Cohen-Addad
, and
R.
Höhler
, “
Is the yield stress of aqueous foam a well-defined quantity?
,”
Colloids Surf. A
263
,
111
116
(
2005
).
320.
D.
Buzza
,
C.-Y.
Lu
, and
M.
Cates
, “
Linear shear rheology of incompressible foams
,”
J. Phys. II
5
,
37
52
(
1995
).
321.
S.
Besson
and
G.
Debrégeas
, “
Statics and dynamics of adhesion between two soap bubbles
,”
Eur. Phys. J. E
24
,
109
117
(
2007
).
322.
J.
Seiwert
,
M.
Monloubou
,
B.
Dollet
, and
I.
Cantat
, “
Extension of a suspended soap film: A homogeneous dilatation followed by new film extraction
,”
Phys. Rev. Lett.
111
,
094501
(
2013
).
323.
N. D.
Denkov
,
S.
Tcholakova
,
K.
Golemanov
,
K.
Ananthpadmanabhan
, and
A.
Lips
, “
The role of surfactant type and bubble surface mobility in foam rheology
,”
Soft Matter
5
,
3389
3408
(
2009
).
324.
T.
Mason
,
J.
Bibette
, and
D.
Weitz
, “
Yielding and flow of monodisperse emulsions
,”
J. Colloid Interface Sci.
179
,
439
448
(
1996
).
325.
R.
Höhler
and
S.
Cohen-Addad
, “
Rheology of liquid foam
,”
J. Phys.: Condens. Matter
17
,
R1041
(
2005
).
326.
L.
Ducloué
,
O.
Pitois
,
J.
Goyon
,
X.
Chateau
, and
G.
Ovarlez
, “
Coupling of elasticity to capillarity in soft aerated materials
,”
Soft Matter
10
,
5093
5098
(
2014
).
327.
G.
Richardson
,
M.
Langton
,
P.
Fäldt
, and
A.-M.
Hermansson
, “
Microstructure of α-crystalline emulsifiers and their influence on air incorporation in cake batter
,”
Cereal Chem.
79
,
546
552
(
2002
).
You do not currently have access to this content.