The present review covers the latest evolution of computational aeroacoustics, the field that deals with the noise generated by fluid flows and its propagation in the medium. It highlights the latest findings in both free flows (jet noise) and wall-bounded flows (airfoil, airframe, and turbomachinery noise) in more and more complex environments. Among the computational aero-acoustics methods, high-order schemes of the Navier–Stokes equations on unstructured grids and the lattice Boltzmann method on Cartesian grids have emerged as excellent candidates to tackle noise problems in realistic complex geometries. The latter is also shown to be particularly efficient for both noise generation and propagation, allowing to directly estimate the noise in the far field. Two examples of application of such methods to complex jet noise and to installed airfoil noise are first presented. The first one involves compressible subsonic and supersonic flows in dual-stream nozzles and the second one subsonic flow around an airfoil embedded in the potential core of the open-jet anechoic wind tunnel as in the actual trailing-edge noise experiment. For airframe noise, large eddy simulations of scaled nose landing gear noise and three-element high-lift devices can be tackled to decipher noise sources. For turbomachinery noise, simulations of installed low-speed fans have already unveiled a wealth of details on their noise sources, whereas high-speed turbofans remain a challenge giving the high Reynolds numbers and small tip gaps involved.

1.
T.
Münzel
,
T.
Gori
,
W.
Babisch
, and
M.
Basner
, “
Cardiovascular effects of environmental noise exposure
,”
Eur. Heart J.
35
,
829
836
(
2014
).
2.
M.
Basner
,
M.
Brink
,
A.
Bristow
,
Y.
de Kluizenaar
,
L.
Finegold
,
J.
Hong
,
S.
Janssen
,
R.
Klaboe
,
T.
Leroux
,
A.
Liebl
,
T.
Matsui
,
D.
Schwela
,
M.
Sliwinska-Kowalska
, and
P.
Sörgvist
, “
ICBEN review of research on the biological effects of noise 2011–2014
,”
Noise Health
75
,
57
82
(
2015
).
3.
M. J.
Lighthill
, “
On sound generated aerodynamically. I. General theory
,”
Proc. R. Soc. London, Ser. A
211
,
564
587
(
1952
).
4.
J. E.
Ffowcs Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. A
264
,
321
342
(
1969
).
5.
M. J.
Lighthill
, “
The Bakerian lecture 1961, sound generated aerodynamically
,”
Proc. R. Soc. London, Ser. A
267
,
147
182
(
1962
).
6.
T.
Colonius
and
S.
Lele
, “
Computational aeroacoustics: Progress on nonlinear problems of sound generation
,”
Prog. Aerosp. Sci.
40
,
345
416
(
2004
).
7.
M.
Wang
,
J. B.
Freund
, and
S. K.
Lele
, “
Computational prediction of flow-generated sound
,”
Annu. Rev. Fluid Mech.
38
,
483
512
(
2006
).
8.
S. K.
Lele
and
J. W.
Nichols
, “
A second golden age of aeroacoustics?
,”
Philos. Trans. R. Soc. A
372
,
20130321
(
2014
).
9.
S.
Moreau
, “
Direct noise computation of low-speed ring fans
,”
Acta Acust. Acust.
105
,
30
13
(
2019
).
10.
S.
Moreau
, “
Turbomachinery noise predictions: Present and future
,”
Acoustics
1
,
92
116
(
2019
).
11.
S.
Moreau
,
A Review of Turbomachinery Noise: From Analytical Models to High-Fidelity Simulations
, Fundamentals of High Lift for Future Civil Aircraft, edited by
R.
Radespiel
and
R.
Semaan
(
Springer Nature Switzerland AG
,
2020
).
12.
S.
Moreau
and
M.
Roger
, “
Advanced noise modeling for future propulsion systems
,”
Int. J. Aeroacoust.
17
,
576
599
(
2018
).
13.
S.
Marié
,
D.
Ricot
, and
P.
Sagaut
, “
Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics
,”
J. Comput. Phys.
228
,
1056
1070
(
2009
).
14.
C. K. W.
Tam
,
Computational Aeroacoustics: A Wavenumber Approach
, Series Cambridge Aerospace Series (
Cambridge University Press
,
2012
).
15.
C.
Wagner
,
T.
Hüttl
, and
P.
Sagaut
,
Large-Eddy Simulation for Acoustics
, Series Cambridge Aerospace Series (
Cambridge University Press
,
2007
), Vol.
20
.
16.
C.
Bailly
,
C.
Bogey
, and
O.
Marsden
, “
Progress in direct noise computation
,”
Int. J. Aeroacoust.
9
,
123
143
(
2010
).
17.
L.
Quartapelle
and
V.
Selmin
, “
High-order Taylor–Galerkin methods for nonlinear multidimensional problems
,” in
Finite Elements in Fluids
(
Pineridge Press
,
Swansea
,
1993
), pp.
1374
1384
.
18.
J.
Utzmann
,
T.
Schwartzkopff
,
M.
Dumbser
, and
C. D.
Munz
, “
Heterogeneous domain decomposition for computational aeroacoustics
,”
AIAA J.
44
,
2231
2250
(
2006
).
19.
L.
Liu
,
X.
Li
, and
F. Q.
Hu
, “
Nonuniform time-step Runge–Kutta discontinuous Galerkin method for computational aeroacoustics
,”
J. Comput. Phys.
229
,
6874
6897
(
2010
).
20.
R.
Léger
,
C.
Peyret
, and
S.
Piperno
, “
Coupled discontinuous Galerkin/finite difference solver on hybrid meshes for computational aeroacoustics
,”
AIAA J.
50
,
338
349
(
2012
).
21.
H.
Chen
, “
Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept
,”
Phys. Rev. E
58
,
3955
3963
(
1998
).
22.
H.
Chen
,
S. A.
Orszag
,
I.
Staroselsky
, and
S.
Succi
, “
Expanded analogy between Boltzmann kinetic theory of fluids and turbulence
,”
J. Fluid Mech.
519
,
301
314
(
2004
).
23.
T.
Astoul
, “
Towards improved lattice Boltzmann aeroacoustic simulations with non-uniform grids: Application to landing gears noise prediction
,” Ph.D. thesis (
Université Aix-Marseille Université
,
Marseille
,
2021
).
24.
T.
Colonius
, “
Modeling artificial boundary conditions for compressible flows
,”
Annu. Rev. Fluid Mech.
36
,
315
345
(
2004
).
25.
E. S.
Kam
,
R. M. C.
So
, and
R. C. K.
Leung
, “
Lattice Boltzman method simulation of aeroacoustics and nonreflecting boundary conditions
,”
AIAA J.
45
,
1703
1712
(
2007
).
26.
T.
Poinsot
and
S.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
27.
C.
Tam
and
Z.
Dong
, “
Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow
,”
J. Comput. Phys.
4
,
175
201
(
1996
).
28.
N.
Guézennec
and
T.
Poinsot
, “
Acoustically nonreflecting and reflecting boundary conditions for vorticity injection in compressible solvers
,”
AIAA J.
47
,
1709
1722
(
2009
).
29.
X.
Gloerfelt
and
J.-C.
Robinet
, “
Silent inflow condition for turbulent boundary layers
,”
Phys. Rev. Fluids
2
,
124603
(
2017
).
30.
N.
Odier
,
M.
Sanjosé
,
L.
Gicquel
,
T.
Poinsot
,
S.
Moreau
, and
F.
Duchaine
, “
A characteristic inlet boundary condition for compressible, turbulent, multispecies turbomachinery flows
,”
Comput. Fluids
178
,
41
55
(
2019
).
31.
G.
Daviller
,
G.
Oztarlik
, and
T.
Poinsot
, “
A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves
,”
Comput. Fluids
190
,
503
513
(
2019
).
32.
R.
Sandberg
and
N.
Sandham
, “
Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound
,”
AIAA J.
44
,
402
405
(
2006
).
33.
R.
Sandberg
, “
Compressible-flow DNS with application to airfoil noise
,”
Flow, Turbul. Combust.
95
,
211
229
(
2015
).
34.
T.
Astoul
,
G.
Wissocq
,
J. F.
Boussuge
,
A.
Sengissen
, and
P.
Sagaut
, “
Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method
,”
J. Comput. Phys.
418
,
109645
(
2020
).
35.
B.-H.
Chu
and
L.
Kovàsznay
, “
Non-linear interactions in a viscous heat-conducting compressible gas
,”
J. Fluid Mech.
3
,
494
514
(
1958
).
36.
M.
Sanjosé
,
A.
Fosso Pouangué
,
S.
Moreau
,
G.
Wang
, and
T.
Padois
, “
Unstructured LES of the baseline EXEJET dual-stream jet
,” AIAA Paper No. 2014-3037,
2014
.
37.
D. J.
Bodony
and
S. K.
Lele
, “
Current status of jet noise predictions using large-eddy simulation
,”
AIAA J.
46
,
364
380
(
2008
).
38.
G. A.
Brès
and
S. K.
Lele
, “
Modelling of jet noise: A perspective from large-eddy simulations
,”
Philos. Trans. R. Soc. A
377
,
20190081
(
2019
).
39.
A. S.
Lyrintzis
and
M.
Coderoni
, “
Overview of the use of large-eddy simulations in jet aeroacoustics
,”
AIAA J.
58
,
1620
1638
(
2020
).
40.
J. B.
Freund
, “
Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9
,”
J. Fluid Mech.
438
,
277
306
(
2001
).
41.
M.
Zhu
,
C.
Pérez Arroyo
,
A.
Fosso Pouangué
,
M.
Sanjosé
, and
S.
Moreau
, “
Isothermal and heated subsonic jet noise using large eddy simulations on unstructured grids
,”
Comput. Fluids
171
,
166
192
(
2018
).
42.
G. A.
Brès
,
P.
Jordan
,
V.
Jaunet
,
M. L.
Rallic
,
A. V. G.
Cavalieri
,
A.
Towne
,
S. K.
Lele
,
T.
Colonius
, and
O. T.
Schmidt
, “
Importance of the nozzle-exit boundary-layer state in subsonic turbulent jets
,”
J. Fluid Mech.
851
,
83
124
(
2018
).
43.
C.
Bogey
and
R.
Sabatini
, “
Effects of nozzle-exit boundary-layer profile on the initial shear-layer instability, flow field and noise of subsonic jets
,”
J. Fluid Mech.
876
,
288
325
(
2019
).
44.
C.
Bogey
and
C.
Bailly
, “
Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets
,”
J. Fluid Mech.
663
,
507
538
(
2010
).
45.
C.
Bogey
,
O.
Marsden
, and
C.
Bailly
, “
Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers
,”
Phys. Fluids
23
,
035104
(
2011
).
46.
A.
Fosso Pouangué
,
M.
Sanjosé
,
S.
Moreau
,
G.
Daviller
, and
H.
Deniau
, “
Subsonic jet noise simulations using both structured and unstructured grids
,”
AIAA J.
53
,
55
69
(
2015
).
47.
C.
Pérez Arroyo
and
S.
Moreau
, “
Azimuthal mode analysis of broadband shock-associated noise in an under-expanded axisymmetric jet
,”
J. Sound Vib.
449
,
64
83
(
2019
).
48.
A.
Fosso Pouangué
,
M.
Sanjosé
, and
S.
Moreau
, “
Dual-stream jet noise simulations with realistic nozzle geometries using a fully unstructured LES solver
,” AIAA Paper No. 2014-2756 (
2014
).
49.
M.
Lorteau
,
F.
Cléro
, and
F.
Vuillot
, “
Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution
,”
Phys. Fluids
27
,
075108
(
2015
).
50.
A.
Refloch
,
B.
Courbet
,
A.
Murrone
,
P.
Villedieu
,
C.
Laurent
,
P.
Gilbank
,
J.
Troyes
,
L.
Tessé
,
G.
Chaineray
,
J. B.
Dargaud
,
E.
Quémerais
, and
F.
Vuillot
,
CEDRE Software
(
AerospaceLab
,
2011
), Vol.
2
, pp.
1
10
.
51.
J.
Bridges
and
M.
Wernet
, “
Establishing consensus turbulence statistics for hot subsonic jets
,” AIAA Paper No. 2010-3751,
2010
.
52.
W. C. P.
van der Velden
,
D.
Casalino
,
P.
Gopalakrishnan
,
A.
Jammalamadaka
,
Y.
Li
,
R.
Zhang
, and
H.
Chen
, “
Validation of jet noise simulations and resulting insights of acoustic near field
,”
AIAA J.
57
,
5156
5167
(
2019
).
53.
F.
Gand
and
M.
Huet
, “
On the generation of turbulent inflow for hybrid RANS/LES jet flow simulations
,”
Comput. Fluids
216
,
104816
(
2021
).
54.
A.
Uzun
,
J.
Bin
, and
M. Y.
Hussaini
, “
High-fidelity numerical simulation of a chevron nozzle jet flow
,”
Int. J. Aeroacoust.
10
,
531
564
(
2011
).
55.
S.
Eastwood
,
H.
Xia
, and
P. G.
Tucker
, “
Large-eddy simulation of complex geometry jets
,”
J. Propul. Power
28
,
235
245
(
2012
).
56.
C. C.
Ye
,
P. J. Y.
Zhang
, and
Z. H.
Wan
, “
Numerical investigation of the bevelled effects on shock structure and screech noise in planar supersonic jets
,”
Phys. Fluids
32
,
086103
(
2020
).
57.
M.
Coderoni
,
A. S.
Lyrintzis
, and
G. A.
Blaisdell
, “
Large-eddy simulations analysis of supersonic heated jets with fluid injection for noise reduction
,”
AIAA J.
57
,
3442
3455
(
2019
).
58.
C.
Prasad
and
P.
Morris
, “
A study of noise reduction mechanisms of jets with fluid inserts
,”
J. Sound Vib.
476
,
115331
(
2020
).
59.
D. R.
Gonzalez
,
D. V.
Gaitonde
, and
M. J.
Lewis
, “
Large-eddy simulations of plasma-based asymmetric control of supersonic round jets
,”
Int. J. Comput. Fluid Dyn.
29
,
240
256
(
2015
).
60.
B.
Kong
,
T.
Li
, and
Q.
Eri
, “
Large eddy simulation of turbulent jet controlled by two pulsed jets: Effect of forcing frequency
,”
Aerosp. Sci. Technol.
89
,
356
369
(
2019
).
61.
A.
Dauptain
,
L. Y. M.
Gicquel
, and
S.
Moreau
, “
Large eddy simulation of supersonic impinging jets
,”
AIAA J.
50
,
1560
1574
(
2012
).
62.
R.
Gojon
,
C.
Bogey
, and
O.
Marsden
, “
Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation
,”
J. Fluid Mech.
808
,
90
115
(
2016
).
63.
C.
Brehm
,
J. A.
Housman
, and
C. C.
Kiris
, “
Noise generation mechanisms for a supersonic jet impinging on an inclined plate
,”
J. Fluid Mech.
797
,
802
850
(
2016
).
64.
S.
Ramamurti
,
A.
Corrigan
,
J.
Liu
,
K.
Kailasanath
, and
B.
Henderson
, “
Jet noise simulations for complex nozzle geometries
,”
Int. J. Aeroacoust.
14
,
947
975
(
2015
).
65.
J. C.
Tyacke
,
M.
Mahak
, and
P. G.
Tucker
, “
Large-scale multifidelity, multiphysics, hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation of an installed aeroengine
,”
J. Propul. Power
32
,
997
1007
(
2016
).
66.
M.
Ferand
,
G.
Daviller
,
S.
Moreau
,
C.
Sensiau
, and
T.
Poinsot
, “
Using LES for combustion noise propagation to the far-field by considering the jet flow of a dual-stream nozzle
,” AIAA Paper No. 2018-3282,
2018
.
67.
H.
Yokoyama
,
A.
Miki
,
H.
Onitsuka
, and
A.
Iida
, “
Direct numerical simulation of fluid-acoustic interactions in a recorder with tone holes
,”
J. Acoust. Soc. Am.
138
,
858
873
(
2015
).
68.
T.
Yoshinaga
,
K.
Nozaki
, and
S.
Wada
, “
Experimental and numerical investigation of the sound generation mechanisms of sibilant fricatives using a simplified vocal tract model
,”
Phys. Fluids
30
,
035104
(
2018
).
69.
M.
Sanjosé
,
S.
Moreau
,
M.
Kim
, and
F.
Pérot
, “
Direct self-noise simulation of the installed controlled diffusion airfoil
,” AIAA Paper No. 2011-2716,
2011
.
70.
E.
Manoha
,
B.
Troff
, and
P.
Sagaut
, “
Trailing edge noise prediction using large eddy simulation and acoustic analogy
,”
AIAA J.
38
,
575
583
(
2000
).
71.
J.
Casper
and
F.
Farassat
, “
A new time domain formulation for broadband noise predictions
,”
Int. J. Aeroacoust.
1
,
207
240
(
2002
).
72.
R.
Sandberg
and
N.
Sandham
, “
Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation
,”
J. Fluid Mech.
596
,
353
385
(
2008
).
73.
S.
Moreau
,
M.
Henner
,
G.
Iaccarino
,
M.
Wang
, and
M.
Roger
, “
Analysis of flow conditions in freejet experiments for studying airfoil self-noise
,”
AIAA J.
41
,
1895
1905
(
2003
).
74.
G.
Yakhina
,
M.
Roger
,
S.
Moreau
,
L.
Nguyen
, and
V.
Golubev
, “
Experimental and analytical investigation of the tonal trailing-edge noise radiated by low Reynolds number aerofoils
,”
Acoust.
2
,
293
329
(
2020
).
75.
T. F.
Brooks
,
M. A.
Marcollini
, and
D. S.
Pope
, “
Airfoil trailing edge flow measurements
,”
AIAA J.
24
,
1245
1251
(
1986
).
76.
M.
Wang
and
P.
Moin
, “
Computation of trailing-edge flow and noise using large-eddy simulation
,”
AIAA J.
38
,
2201
2209
(
2000
).
77.
M.
Wang
,
S.
Moreau
,
G.
Iaccarino
, and
M.
Roger
, “
Les prediction of wall-pressure fluctuations and noise of a low-speed airfoil
,”
Int. J. Aeroacoust.
8
,
177
197
(
2009
).
78.
R. K.
Amiet
, “
Noise due to turbulent flow past a trailing edge
,”
J. Sound Vib.
47
,
387
393
(
1976
).
79.
M.
Roger
and
S.
Moreau
, “
Back-scattering correction and further extensions of Amiet's trailing edge noise model. Part 1: Theory
,”
J. Sound Vib.
286
,
477
506
(
2005
).
80.
S.
Moreau
and
M.
Roger
, “
Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part II: Application
,”
J. Sound Vib.
323
,
397
425
(
2009
).
81.
M.
Roger
and
S.
Moreau
, “
Addendum to the back-scattering correction of Amiet's trailing-edge noise model
,”
J. Sound Vib.
331
,
5383
5385
(
2012
).
82.
J. E.
Ffowcs-Williams
and
L. H.
Hall
, “
Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half-plane
,”
J. Fluid Mech.
40
,
657
670
(
1970
).
83.
S.
Lee
,
L.
Ayton
,
F.
Bertagnolio
,
S.
Moreau
,
T. P.
Chong
, and
P.
Joseph
, “
Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application
,”
Prog. Aerosp. Sci.
126
,
100737
(
2021
).
84.
H.
Wu
,
S.
Moreau
, and
R.
Sandberg
, “
Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at Rec = 150 000
,”
J. Fluid Mech.
868
,
584
610
(
2019
).
85.
H.
Wu
, “
Direct numerical simulation of airfoil self-noise at high Reynolds numbers
,” Ph.
D. thesis
(
Université de Sherbrooke
,
2019
).
86.
J.
Winkler
,
H.
Wu
,
S.
Moreau
,
T.
Carolus
, and
R.
Sandberg
, “
Trailing-edge broadband noise prediction of an airfoil with boundary-layer tripping
,”
J. Sound Vib.
482
,
115450
(
2020
).
87.
S.
Moreau
,
C.
Schram
, and
M.
Roger
, “
Diffraction effects on the trailing edge noise measured in an open-jet anechoic wind tunnel
,” AIAA Paper No. 2007-3706,
2007
.
88.
H.
Wu
,
S.
Moreau
, and
R.
Sandberg
, “
On the noise generated by a controlled-diffusion aerofoil at
Rec=1.5×105,”
J. Sound Vib.
506
,
116152
(
2020
).
89.
Y.
Addad
,
R.
Prosser
,
D.
Laurence
,
S.
Moreau
, and
F.
Mendonca
, “
On the use of embedded meshes in the LES of external flow
,”
Flow, Turbul. Combust.
80
,
393
403
(
2008
).
90.
J.
Christophe
,
J.
Anthoine
, and
S.
Moreau
, “
Trailing edge noise of a controlled-diffusion airfoil at moderate and high angle of attack
,” AIAA Paper No. 2009-3196,
2009
.
91.
J.
Christophe
,
S.
Moreau
,
C.
Hamman
,
J.
Witteveen
, and
G.
Iaccarino
, “
Uncertainty quantification for the trailing-edge noise of a controlled-diffusion airfoil
,”
AIAA J.
53
,
42
54
(
2015
).
92.
R.
Matouk
,
J.
Christophe
, and
G.
Degrez
, “
Aerodynamics and aeroacoustics study of the flow around an automotive fan airfoil
,”
Int. J. Aeroacoust.
14
,
1049
1070
(
2015
).
93.
R.
Martinez-Lera
,
J.
Christophe
, and
C.
Schram
, “
Computation of the self-noise of a controlled-diffusion airfoil based on the acoustic analogy
,”
Int. J. Aeroacoust.
16
,
1049
1070
(
2017
).
94.
M.
Deuse
and
R.
Sandberg
, “
Different noise generation mechanisms of a controlled diffusion aerofoil and their dependence on Mach number
,”
J. Sound Vib.
476
,
115317
(
2020
).
95.
M.
Sanjosé
,
A.
Towne
,
P.
Jaiswal
,
S.
Moreau
, and
S.
Lele
, “
Modal analysis of the laminar boundary layer instability and tonal noise of an airfoil at Reynolds number 150 000
,”
Int. J. Aeroacoust.
18
,
317
350
(
2019
).
96.
T.
Padois
,
P.
Laffay
,
A.
Idier
, and
S.
Moreau
, “
Tonal noise of a controlled-diffusion airfoil at low angle of attack and Reynolds number
,”
J. Acoust. Soc. Am.
140
,
EL113
EL118
(
2016
).
97.
P.
Jaiswal
,
Y.
Pasco
,
G.
Yakhina
, and
S.
Moreau
, “
Experimental investigation of aerofoil tonal noise at low Mach number
,”
J. Fluid Mech.
932
,
A37
(
2022
).
98.
S.
Moreau
and
M.
Roger
, “
Competing broadband noise mechanisms in low-speed axial fans
,”
AIAA J.
45
,
48
57
(
2007
).
99.
J. W.
Kim
,
S.
Haeri
, and
P.
Joseph
, “
On the reduction of aerofoil turbulence interaction noise associated with wavy leading edges
,”
J. Fluid Mech.
792
,
526
552
(
2016
).
100.
V.
Clair
,
C.
Polacsek
,
T. L.
Garrec
,
G.
Reboul
,
M.
Gruber
, and
P.
Joseph
, “
Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges
,”
AIAA J.
51
,
2695
2713
(
2013
).
101.
J.
Gill
,
X.
Zhang
, and
P.
Joseph
, “
Symmetric airfoil geometry effects on leading edge noise
,”
J. Acoust. Soc. Am.
134
,
2669
2680
(
2013
).
102.
J.
Gill
,
X.
Zhang
, and
P.
Joseph
, “
Single velocity-component modeling of leading edge turbulence interaction noise
,”
J. Acoust. Soc. Am.
137
,
3209
3220
(
2015
).
103.
D.
Kim
,
S.
Heo
, and
C.
Cheong
, “
Time-domain inflow boundary condition for turbulence-airfoil interaction noise prediction using synthetic turbulence modeling
,”
J. Sound Vib.
340
,
407
420
(
2015
).
104.
F.
Gea-Aguilera
,
J.
Gill
, and
X.
Zhang
, “
Synthetic turbulence methods for computational aeroacoustic simulations of leading edge noise
,”
Comput. Fluids
157
,
240
252
(
2017
).
105.
J.
Christophe
,
J.
Anthoine
,
P.
Rambaud
,
C.
Schram
,
F.
Mathey
, and
S.
Moreau
, “
Prediction of incoming turbulent noise using a combined numerical/semi-empirical method and experimental validation
,” AIAA Paper No. 2007-3468,
2007
.
106.
R. K.
Amiet
, “
Acoustic radiation from an airfoil in a turbulent stream
,”
J. Sound Vib.
41
,
407
420
(
1975
).
107.
H.
Deniau
,
G.
Dufour
,
J.-F.
Boussuge
,
C.
Polacsek
, and
S.
Moreau
, “
Affordable compressible LES of airfoil-turbulence interaction in a free jet
,” AIAA Paper No. 2011-2707,
2011
.
108.
L.
Jones
and
R.
Sandberg
, “
Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations
,”
J. Fluid Mech.
706
,
295
322
(
2012
).
109.
M.
Sanjose
,
C.
Meon
,
V.
Masson
, and
S.
Moreau
, “
Direct numerical simulation of acoustic reduction using serrated trailing-edge on an isolated airfoil
,” AIAA Paper No. 2014-2324,
2014
.
110.
F.
Avallone
,
W. C. P.
van der Velden
,
D.
Ragni
, and
D.
Casalino
, “
Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations
,”
J. Fluid Mech.
848
,
560
591
(
2018
).
111.
J. M.
Turner
, “
On the universal trends in the noise reduction due to wavy leading edges in aerofoil-vortex interaction
,”
J. Fluid Mech.
871
,
186
211
(
2019
).
112.
M.
Sanjosé
,
S.
Moreau
,
B.
Lyu
, and
L. J.
Ayton
, “
Analytical, numerical and experimental investigation of trailing-edge noise reduction on a controlled diffusion airfoil with serrations
,” AIAA Paper No. 2019-2450,
2019
.
113.
S.-R.
Koh
,
M.
Meinke
, and
W.
Schröder
, “
Numerical analysis of the impact of permeability on trailing-edge noise
,”
J. Sound Vib.
421
,
348
376
(
2018
).
114.
V. B.
Ananthan
,
P.
Bernicke
,
R. A. D.
Akkermans
,
T.
Hu
, and
P.
Liu
, “
Effect of porous material on trailing edge sound sources of a lifting airfoil by zonal overset-LES
,”
J. Sound Vib.
480
,
115386
(
2020
).
115.
R.
Zamponi
,
S.
Satcunanathan
,
S.
Moreau
,
D.
Ragni
,
M.
Meinke
,
W.
Schröder
, and
C.
Schram
, “
On the role of turbulence distortion on leading-edge noise reduction by means of porosity
,”
J. Sound Vib.
485
,
115561
(
2020
).
116.
R.
Zamponi
,
S.
Moreau
, and
C.
Schram
, “
Rapid distortion theory of turbulent flow around a porous cylinder
,”
J. Fluid Mech.
915
,
A27
(
2021
).
117.
M.
Gelot
and
J. W.
Kim
, “
On the universal trends in the noise reduction due to wavy leading edges in aerofoil-vortex interaction
,”
J. Fluid Mech.
904
,
A30
(
2020
).
118.
C.
Teruna
,
F.
Manegar
,
F.
Avallone
,
D.
Ragni
,
D.
Casalino
, and
T.
Carolus
, “
Noise reduction mechanisms of an open-cell metal-foam trailing edge
,”
J. Fluid Mech.
898
,
A18
(
2020
).
119.
C.
Teruna
,
F.
Avallone
,
D.
Ragni
,
A.
Rubio-Carpio
, and
D.
Casalino
, “
Numerical analysis of a 3-D printed porous trailing edge for broadband noise reduction
,”
J. Fluid Mech.
926
,
A17
(
2021
).
120.
C.
Teruna
,
F.
Avallone
,
D.
Casalino
, and
D.
Ragni
, “
Numerical investigation of leading edge noise reduction on a rod-airfoil configuration using porous materials and serrations
,”
J. Sound Vib.
494
,
115880
(
2021
).
121.
J. M.
Turner
and
J. W.
Kim
, “
Effect of spanwise domain size on direct numerical simulations of airfoil noise during flow separation and stall
,”
Phys. Fluids
32
,
065103
(
2020
).
122.
W.
Dobrzynski
, “
Almost 40 years of airframe noise research: What did we achieve?
,”
J. Aircr.
47
,
353
367
(
2010
).
123.
J.-C.
Giret
, “
Simulations aux grandes échelles des écoulements instationnaires turbulents autour des trains d'atterrissage pour la prédiction du bruit aérodynamique
,” Ph.D. thesis (
Université de Toulouse
,
Toulouse
,
2014
).
124.
M.
Jacob
,
J.
Boudet
,
D.
Casalino
, and
M.
Michard
, “
A rod-airfoil experiment as a benchmark for broadband noise modeling
,”
Theor. Comput. Fluid Dyn.
19
,
171
196
(
2005
).
125.
G. A.
Brès
,
D.
Freed
,
M.
Wessels
,
S.
Noelting
, and
F.
Perot
, “
Flow and noise predictions for the tandem cylinder aeroacoustic benchmark
,”
Phys. Fluids
24
,
036101
(
2012
).
126.
J.-C.
Giret
,
A.
Sengissen
,
S.
Moreau
,
M.
Sanjosé
, and
J.-C.
Jouhaud
, “
Noise source analysis of a rod–airfoil configuration using unstructured large eddy simulation
,”
AIAA J.
53
,
1062
1076
(
2015
).
127.
J.-C.
Giret
,
A.
Sengissen
,
S.
Moreau
, and
J.-C.
Jouhaud
, “
Prediction of LAGOON landing-gear noise using an unstructured LES solver
,” AIAA Paper No. 2013-2113,
2013
.
128.
D.
Casalino
,
A.
Ribeiro
, and
E.
Fares
, “
Facing rim cavities fluctuation modes
,”
J. Sound Vib.
333
,
2812
2830
(
2014
).
129.
F.
de la Puente Cerezo
,
L.
Sanders
, and
F.
Vuillot
, “
Detached eddy simulation of a simplied nose landing-gear for flow and noise predictions using an unstructured Navier–Stokes solver
,”
J. Sound Vib.
405
,
86
111
(
2017
).
130.
C.
Zhang
,
M.
Sanjosé
, and
S.
Moreau
, “
Wall-modeled large eddy simulation with adverse pressure gradients: Application to bluff bodies
,” in
Proceeding of 26th Annual Conference of the CFD Society of Canada
, Winnipeg, Manitoba, Canada,
2018
.
131.
C.
Zhang
,
M.
Sanjosé
, and
S.
Moreau
, “
Turbulent flow and noise sources on a circular cylinder in the critical regime
,”
AIP Adv.
9
,
085009
(
2019
).
132.
A.
Fosso-Pouangue
,
C.
Mnasri
, and
S.
Moreau
, “
Parameterization and optimization of broadband noise for high-lift devices
,”
Comp. Fluids
140
,
308
319
(
2016
).
133.
M.
Terracol
and
E.
Manoha
, “
Wall-resolved large-eddy simulation of a three-element high-lift airfoil
,”
AIAA J.
58
,
517
536
(
2020
).
134.
P.
Salas
and
S.
Moreau
, “
Aeroacoustic simulations of a simplified high-lift device accounting for some installation effects
,”
AIAA J.
55
,
774
789
(
2017
).
135.
M.
Roger
,
S.
Moreau
, and
K.
Kucukcoskun
, “
On sound scattering by rigid edges and wedges in a flow, with applications to high-lift device aeroacoustics
,”
J. Sound Vib.
362
,
252
275
(
2016
).
136.
P.
Salas
,
G.
Fauquembergue
, and
S.
Moreau
, “
Direct noise simulation of a canonical high lift device and comparison with an analytical model
,”
J. Acoust. Soc. Am.
140
,
2091
2100
(
2016
).
137.
M.
Terracol
,
E.
Manoha
, and
B.
Lemoine
, “
Investigation of the unsteady flow and noise generation in a slat cove
,”
AIAA J.
54
,
469
489
(
2016
).
138.
R.
Satti
,
Y.
Li
,
R.
Shock
, and
S.
Noelting
, “
Unsteady flow analysis of a multi-element airfoil using lattice Boltzmann method
,”
AIAA J.
50
,
1805
1816
(
2012
).
139.
F.
Pérot
,
M.-S.
Kim
,
S.
Moreau
,
M.
Henner
, and
D.
Neal
, “
Direct aeroacoustics prediction of a low-speed axial fan
,” AIAA Paper No. 2010-3887,
2010
.
140.
M.
Sanjosé
,
D.
Lallier-Daniels
, and
S.
Moreau
, “
Aeroacoustics analysis of a low subsonic axial fan
,” ASME Paper No. GT2015-12345,
2015
.
141.
S.
Moreau
and
M.
Sanjosé
, “
Sub-harmonic broadband humps and tip noise in low-speed ring fans
,”
J. Acoust. Soc. Am.
139
,
118
127
(
2016
).
142.
M.
Piellard
,
B.
Coutty
,
V.
Le Goff
,
F.
Pérot
, and
V.
Vidal
, “
Direct aeroacoustics simulation of automotive cooling fan system: Effect of upstream geometry on broadband noise
,” AIAA Paper No. 2014-2455,
2014
.
143.
D.
Lallier-Daniels
,
M.
Sanjosé
,
S.
Moreau
, and
M.
Piellard
, “
Aeroacoustic study of an axial engine cooling module using lattice-Boltzmann simulations and the Ffowcs Williams and Hawkings' analogy
,”
Eur. J. Mech. B/Fluids
61
,
244
254
(
2017
).
144.
S.
Magne
,
S.
Moreau
, and
A.
Berry
, “
Subharmonic tonal noise from backflow vortices radiated by a low-speed ring fan in uniform inlet flow
,”
J. Acoust. Soc. Am.
137
,
228
237
(
2015
).
145.
T.
Zhu
,
D.
Lallier-Daniels
,
M.
Sanjosé
,
S.
Moreau
, and
T.
Carolus
, “
Rotating coherent flow structures as a source for narrow band tip clearance noise from axial fans
,”
J. Sound Vib.
417
,
198
215
(
2018
).
146.
S. M.
Alavi Moghadam
,
L.
S
,
M.
Meinke
, and
W.
Schröder
, “
Reduced-order analysis of the acoustic near field of a ducted axial fan
,”
Int. J. Heat Fluid Flow
85
,
108657
(
2020
).
147.
S.
Moreau
,
M.
Sanjosé
, and
S.
Magne
, “
Optimization of tonal noise control with flow obstruction
,”
J. Sound Vib.
437
,
264
275
(
2018
).
148.
M.
Sanjosé
and
S.
Moreau
, “
Direct noise prediction and control of an installed large low-speed radial fan
,”
Eur. J. Mech. B/Fluids
61
,
235
243
(
2017
).
149.
D.
Wolfram
and
T.
Carolus
, “
Rotating coherent flow structures as a source for narrow band tip clearance noise from axial fans
,”
J. Sound Vib.
329
,
4380
4397
(
2010
).
150.
M.
Sanjosé
,
S.
Hub
,
F.
Lörcher
, and
S.
Moreau
, “
Noise mechanisms in a radial fan without volute
,”
J. Phys.: Conf. Ser.
1909
,
012009
(
2021
).
151.
M.
Sanjosé
,
M.
Daroukh
,
W.
Magnet
,
J.
De Laborderie
,
S.
Moreau
, and
A.
Mann
, “
Tonal fan noise prediction and validation on the ANCF configuration
,”
Noise Control Eng. J.
63
,
552
561
(
2015
).
152.
M.
Pestana
,
M.
Sanjose
,
S.
Moreau
,
M.
Roger
, and
M.
Gruber
, “
Investigation on the noise of an axial low Mach-number fan stage with a heterogeneous stator
,” in
Fan 2018 Conference
, Darmstadt, Germany,
2018
.
153.
M.
Sanjose
,
S.
Moreau
,
M.
Pestana
, and
M.
Roger
, “
Effect of weak outlet-guide-vane heterogeneity on rotor-stator tonal noise
,”
AIAA J.
55
,
3440
3457
(
2017
).
154.
M.
Daroukh
,
S.
Moreau
,
N.
Gourdain
,
J.-F.
Boussuge
, and
C.
Sensiau
, “
Effect of distortion on turbofan tonal noise at cutback with hybrid methods
,”
Int. J. Turbomach. Propul. Power
2
,
16
(
2017
).
155.
M.
Daroukh
,
S.
Moreau
,
N.
Gourdain
,
J.-F.
Boussuge
, and
C.
Sensiau
, “
Tonal noise prediction of a modern turbofan engine with large upstream and downstream distortion
,”
J. Turbomach.
141
,
021010
(
2019
).
156.
M.
Daroukh
,
S.
Moreau
,
N.
Gourdain
,
J.-F.
Boussuge
, and
C.
Sensiau
, “
Shock wave generation and radiation from a turbofan engine under flow distortion
,”
AIAA J.
58
,
787
801
(
2020
).
157.
A.
Towne
,
A. V. G.
Cavalieri
,
P.
Jordan
,
T.
Colonius
,
O.
Schmidt
,
V.
Jaunet
, and
G. A.
Brès
, “
Acoustic resonance in the potential core of subsonic jets
,”
J. Fluid Mech.
825
,
1113
1152
(
2017
).
158.
C.
Bogey
, “
Acoustic tones in the near-nozzle region of jets-characteristics and variations between Mach numbers 0.5 and 2
,”
J. Fluid Mech.
921
,
A3
(
2021
).
159.
P.
Kholodov
and
S.
Moreau
, “
Wall-resolved large eddy simulation of a realistic turbofan rotor for noise prediction
,” AIAA Paper No. 2021-2256,
2021
.
160.
D.
Casalino
,
A.
Hazir
, and
A.
Mann
, “
Turbofan broadband noise prediction using the lattice Boltzmann method
,”
AIAA J.
56
,
609
628
(
2018
).
161.
C.
Pérez Arroyo
,
T.
Leonard
,
M.
Sanjosé
,
S.
Moreau
, and
F.
Duchaine
, “
Large eddy simulation of a scale-model turbofan for fan noise source diagnostic
,”
J. Sound Vib.
445
,
64
76
(
2019
).
162.
M.
Shur
,
M.
Strelets
,
A.
Travin
,
P.
Spalart
, and
T.
Suzuki
, “
Unsteady simulations of a fan/outlet-guide-vane system: Aerodynamics and turbulence
,”
AIAA J.
56
,
2283
2297
(
2018
).
163.
T.
Suzuki
,
M.
Shur
,
M.
Strelets
,
A.
Travin
, and
P.
Spalart
, “
Unsteady simulations of a fan/outlet-guide-vane system. Part 3: broadband noise computation
,” AIAA Paper No. 2018-3918,
2018
.
164.
P.
Kholodov
and
S.
Moreau
, “
Identification of noise sources in a realistic turbofan rotor using large eddy simulation
,”
Acoustics
2
,
691
706
(
2020
).
165.
P.
Kholodov
and
S.
Moreau
, “
Tip flow evolution in a turbofan rotor for broadband noise diagnostic
,” AIAA Paper No. 2020-2521,
2020
.
166.
D.
Lewis
,
M.
Sanjose
, and
S.
Moreau
, “
Broadband noise predictions on the ACAT1 fan stage using large eddy simulations and analytical models
,” AIAA Paper No. 2020-2519,
2020
.
167.
M. C.
Jacob
,
J.
Grilliat
,
R.
Camussi
, and
G.
Caputi Gennaro
, “
Aeroacoustic investigation of a single airfoil tip leakage flow
,”
Int. J. Aeroacoust.
9
,
253
272
(
2010
).
168.
J.
Boudet
,
J.
Caro
,
L.
Bo
,
E.
Jondeau
, and
M. C.
Jacob
, “
Zonal large-eddy simulation of a tip leakage flow
,”
Int. J. Aeroacoust.
15
,
646
661
(
2016
).
169.
R.
Koch
,
M.
Sanjose
, and
S.
Moreau
, “
Large-eddy simulation of a single airfoil tip-leakage flow
,”
AIAA J.
59
,
2546
2557
(
2021
).
170.
R.
Koch
,
M.
Sanjose
, and
S.
Moreau
, “
Aerodynamic investigation of a linear cascade with tip gap using large-eddy simulation
,”
J. Global Power Propul. Soc.
5
,
39
49
(
2021
).
171.
R.
Koch
,
M.
Sanjose
, and
S.
Moreau
, “
Large-eddy simulation of a linear compressor cascade with tip gap-aerodynamic and acoustic analysis
,” AIAA Paper No. 2021-2312,
2021
.
172.
D.
Casalino
,
F.
Avallone
,
I.
Gonzalez-Martino
, and
D.
Ragni
, “
Aeroacoustic study of a wavy stator leading edge in a realistic fan/OGV stage
,”
J. Sound Vib.
442
,
138
154
(
2019
).
173.
D. R.
Chapman
, “
Computational aerodynamics development and outlook
,”
AIAA J.
17
,
1293
1313
(
1979
).
174.
P.
Kholodov
and
S.
Moreau
, “
Optimization of trailing-edge serrations with and without slits for broadband noise reduction
,”
J. Sound Vib.
490
,
115736
(
2021
).
175.
A.
Alguacil
,
M.
Bauerheim
,
M. C.
Jacob
, and
S.
Moreau
, “
Predicting the propagation of acoustic waves using deep convolutional neural networks
,”
J. Sound Vib.
512
,
116285
(
2021
).
You do not currently have access to this content.