A comprehensive multirotor noise assessment framework is developed to predict the noise of rotational-speed-controlled rotor configurations in real-time. The key objectives are to synthesize the frequency-modulated multirotor noise and analyze the frequency modulation (FM) characteristics. The framework includes modules associated with the flight control, aerodynamics, time reconstruction, noise prediction, and time-frequency analysis (TFA). In addition to the hybrid blade element momentum model, the aerodynamics module contains a linear inflow model, a Beddoes wake model, and an unsteady aerodynamic correction model. The convective form and source-time dominant algorithms are used in the acoustic analogy for tonal noise prediction. The FM characteristics are identified using the synchrosqueezing-based high-resolution TFA for strongly non-stationary signals. The framework is verified through validation and verification studies for diverse rotor configurations and flight conditions. During the cruise flight of the multirotor, the tonal noise exhibits simultaneous frequency and amplitude modulations. In wind gust conditions, these modulations result from rotational speed variations, acoustic wave interference, and Doppler shifting. By clarifying the non-stationary noise signal in diverse flight environments, the proposed framework can facilitate noise assessment in the perception-influenced design stage of multirotor configurations.

1.
S.
Rajendran
and
S.
Srinivas
, “
Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities
,”
Transp. Res. Part E
143
,
102090
(
2020
).
2.
C.
Al Haddad
,
E.
Chaniotakis
,
A.
Straubinger
,
K.
Plötner
, and
C.
Antoniou
, “
Factors affecting the adoption and use of urban air mobility
,”
Transp. Res. Part A
132
,
696
712
(
2020
).
3.
S.
Roy
,
M. T.
Kotwicz Herniczek
,
B. J.
German
, and
L. A.
Garrow
, “
User base estimation methodology for a business airport shuttle air taxi service
,”
J. Air Transp.
29
,
69
79
(
2021
).
4.
S. A.
Rizzi
,
D. L.
Huff
,
D. D.
Boyd
, Jr.
,
P.
Bent
,
B. S.
Henderson
,
K. A.
Pascioni
,
D. C.
Sargent
,
D. L.
Josephson
,
M.
Marsan
,
H.
He
, and
R.
Snider
, “
Urban air mobility noise: Current practice, gaps, and recommendations
,”
Technical Report No. TP-2020-5007433
(
NASA
,
2020
).
5.
A.
Straubinger
,
R.
Rothfeld
,
M.
Shamiyeh
,
K.-D.
Büchter
,
J.
Kaiser
, and
K. O.
Plötner
, “
An overview of current research and developments in urban air mobility–setting the scene for UAM introduction
,”
J. Air Transp. Manage.
87
,
101852
(
2020
).
6.
T.
Edwards
and
G.
Price
, “
eVTOL passenger acceptance
,”
Technical Report No. CR-2020-220460
(
NASA
,
2020
).
7.
J. V.
Foster
,
L. J.
Miller
,
R. C.
Busan
,
S.
Langston
, and
D.
Hartman
, “
Recent NASA wind tunnel free-flight testing of a multirotor unmanned aircraft system
,” AIAA Paper No. AIAA 2020-1504,
2020
.
8.
C. E.
Tinney
and
J.
Sirohi
, “
Multirotor drone noise at static thrust
,”
AIAA J.
56
,
2816
2826
(
2018
).
9.
I.
Djurek
,
A.
Petosic
,
S.
Grubesa
, and
M.
Suhanek
, “
Analysis of a quadcopter's acoustic signature in different flight regimes
,”
IEEE Access
8
,
10662
10670
(
2020
).
10.
J. X.
Bannwarth
,
Z.
Jeremy Chen
,
K. A.
Stol
,
B. A.
MacDonald
, and
P. J.
Richards
, “
Aerodynamic force modeling of multirotor unmanned aerial vehicles
,”
AIAA J.
57
,
1250
1259
(
2019
).
11.
S.
Sun
,
C. C.
de Visser
, and
Q.
Chu
, “
Quadrotor gray-box model identification from high-speed flight data
,”
J. Aircraft
56
,
645
661
(
2019
).
12.
S.
Zhong
,
P.
Zhou
,
R.
Fattah
, and
X.
Zhang
, “
A revisit of the tonal noise of small rotors
,”
Proc. R. Soc. A
476
,
20200491
(
2020
).
13.
R.
McKay
and
M. J.
Kingan
, “
Multirotor unmanned aerial system propeller noise caused by unsteady blade motion
,” AIAA Paper No. AIAA 2019-2499,
2019
.
14.
D.
Kim
,
J.
Ko
,
V.
Saravanan
, and
S.
Lee
, “
Stochastic analysis of a single-rotor to quantify the effect of RPS variation on noise of hovering multirotors
,”
Appl. Acoust.
182
,
108224
(
2021
).
15.
W. J.
Baars
,
L.
Bullard
, and
A.
Mohamed
, “
Quantifying modulation in the acoustic field of a small-scale rotor using bispectral analysis
,” in AIAA Paper No. AIAA 2021-0713,
2021
.
16.
J.
Jeong
,
J.
Ko
,
H.
Cho
, and
S.
Lee
, “
Random process-based stochastic analysis of multirotor hovering noise under rotational speed fluctuations
,”
Phys. Fluids
33
,
127107
(
2021
).
17.
M. T.
Kotwicz Herniczek
,
D.
Feszty
,
S.-A.
Meslioui
,
J.
Park
, and
F.
Nitzsche
, “
Evaluation of acoustic frequency methods for the prediction of propeller noise
,”
AIAA J.
57
,
2465
2478
(
2019
).
18.
Y.
Yang
,
Y.
Liu
,
Y.
Li
,
E.
Arcondoulis
, and
Y.
Wang
, “
Aerodynamic and aeroacoustic performance of an isolated multicopter rotor during forward flight
,”
AIAA J.
58
,
1171
1181
(
2020
).
19.
D.
Barcelos
,
A.
Kolaei
, and
G.
Bramesfeld
, “
Aerodynamic interactions of quadrotor configurations
,”
J. Aircraft
57
,
1074
1090
(
2020
).
20.
H.
Lee
and
D.-J.
Lee
, “
Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle
,”
Phys. Fluids
32
,
047107
(
2020
).
21.
C.
Joseph
and
R.
Mohan
, “
A parallel, object-oriented framework for unsteady free-wake analysis of multi-rotor/wing systems
,”
Comput. Fluids
215
,
104788
(
2021
).
22.
M.
Misiorowski
,
F.
Gandhi
, and
A. A.
Oberai
, “
Computational study on rotor interactional effects for a quadcopter in edgewise flight
,”
AIAA J.
57
,
5309
5319
(
2019
).
23.
T.
Dbouk
and
D.
Drikakis
, “
Quadcopter drones swarm aeroacoustics
,”
Phys. Fluids
33
,
057112
(
2021
).
24.
J.
Ko
,
J.
Kim
, and
S.
Lee
, “
Computational study of wake interaction and aeroacoustic characteristics in multirotor configurations
,” in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
(
Institute of Noise Control Engineering
,
2019
), Vol.
259
, pp.
5145
5156
.
25.
S.
Vouros
,
I.
Goulos
, and
V.
Pachidis
, “
Integrated methodology for the prediction of helicopter rotor noise at mission level
,”
Aerosp. Sci. Technol.
89
,
136
149
(
2019
).
26.
A. K.
Sahai
,
M.
Snellen
, and
D. G.
Simons
, “
Objective quantification of perceived differences between measured and synthesized aircraft sounds
,”
Aerosp. Sci. Technol.
72
,
25
35
(
2018
).
27.
S.
Krishnamurthy
,
S. A.
Rizzi
,
R.
Cheng
,
D. D.
Boyd
, and
A. W.
Christian
, “
Prediction-based auralization of a multirotor urban air mobility vehicle
,” AIAA Paper No. AIAA 2021-0587,
2021
.
28.
S. A.
Rizzi
and
A. K.
Sahai
, “
Auralization of air vehicle noise for community noise assessment
,”
CEAS Aeronaut. J.
10
,
313
334
(
2019
).
29.
F.
Auger
,
P.
Flandrin
,
Y.-T.
Lin
,
S.
McLaughlin
,
S.
Meignen
,
T.
Oberlin
, and
H.-T.
Wu
, “
Time-frequency reassignment and synchrosqueezing: An overview
,”
IEEE Signal Process. Mag.
30
,
32
41
(
2013
).
30.
Z.
Li
,
J.
Gao
,
H.
Li
,
Z.
Zhang
,
N.
Liu
, and
X.
Zhu
, “
Synchroextracting transform: The theory analysis and comparisons with the synchrosqueezing transform
,”
Signal Process.
166
,
107243
(
2020
).
31.
S.
Meignen
,
T.
Oberlin
, and
D.-H.
Pham
, “
Synchrosqueezing transforms: From low-to high-frequency modulations and perspectives
,”
C. R. Phys.
20
,
449
460
(
2019
).
32.
B.
Davoudi
,
E.
Taheri
,
K.
Duraisamy
,
B.
Jayaraman
, and
I.
Kolmanovsky
, “
Quad-rotor flight simulation in realistic atmospheric conditions
,”
AIAA J.
58
,
1992
2004
(
2020
).
33.
Z.
Zuo
, “
Trajectory tracking control design with command-filtered compensation for a quadrotor
,”
IET Control Theory Appl.
4
,
2343
2355
(
2010
).
34.
B.
Davoudi
and
K.
Duraisamy
, “
A hybrid blade element momentum model for flight simulation of rotary wing unmanned aerial vehicles
,” AIAA Paper No. AIAA 2019-2823,
2019
.
35.
T.
Beddoes
, “
A wake model for high resolution airloads
,” in
International Conference on Rotorcraft Basic Research
(
1985
).
36.
E.
Greenwood
 II
,
Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME)
(
University of Maryland
,
College Park
,
2011
).
37.
D.
Casalino
, “
An advanced time approach for acoustic analogy predictions
,”
J. Sound Vib.
261
,
583
612
(
2003
).
38.
G.
Brès
,
K.
Brentner
,
G.
Perez
, and
H.
Jones
, “
Maneuvering rotorcraft noise prediction
,”
J. Sound Vib.
275
,
719
738
(
2004
).
39.
A.
Najafi-Yazdi
,
G. A.
Brès
, and
L.
Mongeau
, “
An acoustic analogy formulation for moving sources in uniformly moving media
,”
Proc. R. Soc. A
467
,
144
165
(
2011
).
40.
G.
Yu
, “
A multisynchrosqueezing-based high-resolution time-frequency analysis tool for the analysis of non-stationary signals
,”
J. Sound Vib.
492
,
115813
(
2021
).
41.
F. M.
Hoblit
,
Gust Loads on Aircraft: Concepts and Applications
(
American Institute of Aeronautics and Astronautics
,
1988
).
42.
D.
Serrano
,
M.
Ren
,
A. J.
Qureshi
, and
S.
Ghaemi
, “
Effect of disk angle-of-attack on aerodynamic performance of small propellers
,”
Aerosp. Sci. Technol.
92
,
901
914
(
2019
).
43.
B.
Theys
,
G.
Dimitriadis
,
P.
Hendrick
, and
J. D.
Schutter
, “
Experimental and numerical study of micro-aerial-vehicle propeller performance in oblique flow
,”
J. Aircraft
54
,
1076
1084
(
2017
).
44.
R.
Niemiec
and
F.
Gandhi
, “
Effects of inflow model on simulated aeromechanics of a quadrotor helicopter
,” in
72nd American Helicopter Society Forum, West Palm Beach, FL
(
American Helicopter Society International, Inc.
,
2016
).
45.
R. T.
Chen
, “
A survey of nonuniform inflow models for rotorcraft flight dynamics and control applications
,”
Technical Report No. TM-102219
(
NASA
,
1989
).
46.
H.
Choi
,
J.
Lee
, and
H.
Park
, “
Wake structures behind a rotor with superhydrophobic-coated blades at low Reynolds number
,”
Phys. Fluids
31
,
015102
(
2019
).
47.
O.
Bilgi
and
Ö.
Savaş
, “
Vortex wakes of tip loaded rotors at low Reynolds numbers
,”
Phys. Fluids
33
,
077102
(
2021
).
48.
C.
Russell
,
J.
Jung
,
G.
Willink
, and
B.
Glasner
, “
Wind tunnel and hover performance test results for multicopter uas vehicles
,” in
72nd American Helicopter Society Forum, West Palm Beach, FL
(
American Helicopter Society International, Inc.
,
2016
).
49.
R. T.
Jones
, “
Operational treatment of the nonuniform-lift theory in airplane dynamics
,”
Technical Report No. TN-667
(
NACA
,
1938
).
50.
B. G.
Van der Wall
and
J. G.
Leishman
, “
The influence of variable flow velocity on unsteady airfoil behavior
,” in
18th European Rotorcraft Forum, Avignon, France
(
Association Aeronautique et Astronautique de France
,
1992
).
51.
L. V.
Lopes
, “
Compact assumption applied to monopole term of Farassat's formulations
,”
J. Aircraft
54
,
1649
1663
(
2017
).
52.
G.
Yu
,
Z.
Wang
, and
P.
Zhao
, “
Multisynchrosqueezing transform
,”
IEEE Trans. Ind. Electron.
66
,
5441
5455
(
2019
).
53.
R. W.
Deters
,
S.
Kleinke
, and
M. S.
Selig
, “
Static testing of propulsion elements for small multirotor unmanned aerial vehicles
,” AIAA Paper No. AIAA 2017-3743,
2017
.
54.
A.
Christian
,
D. D.
Boyd
, Jr.
,
N. S.
Zawodny
, and
S. A.
Rizzi
, “
Auralization of tonal rotor noise components of a quadcopter flyover
,” in
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
(
Institute of Noise Control Engineering
,
2015
), Vol.
250
, pp.
3983
3994
.
55.
M. S.
Selig
,
Summary of Low Speed Airfoil Data
(
SOARTECH Publications
,
1995
).
56.
Y.
Yang
,
Y.
Liu
,
H.
Hu
,
X.
Liu
,
Y.
Wang
,
E. J.
Arcondoulis
, and
Z.
Li
, “
Experimental study on noise reduction of a wavy multi-copter rotor
,”
Appl. Acoust.
165
,
107311
(
2020
).
57.
H.
Hu
,
Y.
Yang
,
Y.
Liu
,
X.
Liu
, and
Y.
Wang
, “
Aerodynamic and aeroacoustic investigations of multi-copter rotors with leading edge serrations during forward flight
,”
Aerosp. Sci. Technol.
112
,
106669
(
2021
).
58.
A.
Thai
,
B.
Roget
,
J.
Sitaraman
, and
S.
Grace
, “
Multirotor trim using loose aerodynamic coupling
,” in
VFS Aeromechanics for Advanced Vertical Flight Technical Meeting, San Jose, CA
(
Vertical Flight Society
,
2020
).
59.
A.
Christian
and
J.
Lawrence
, “
Initial development of a quadcopter simulation environment for auralization
,” in
72nd American Helicopter Society Forum, West Palm Beach, FL
(
American Helicopter Society International, Inc.
,
2016
).
60.
Z.
Jia
and
S.
Lee
, “
Acoustic analysis of a quadrotor eVTOL design via high-fidelity simulations
,” AIAA Paper No. AIAA 2019-2631,
2019
.
You do not currently have access to this content.