Direct numerical simulations of a turbulent channel flow developing over convergent–divergent (C–D) riblets are performed at a Reynolds number of Reb = 2800, based on the half channel height δ and the bulk velocity. To gain an in-depth understanding of the origin of the drag generated by C–D riblets, a drag decomposition method is derived from kinetic energy principle for a turbulent channel flow with wall roughness. C–D riblets with a wavelength, Λ, ranging from 0.25δ to 1.5δ, are examined to understand the influence of secondary flow motions on the drag. It is found that as Λ increases, the intensity of the secondary flow motion increases first and then decreases, peaking at Λ/δ=1. At Λ/δ1, some heterogeneity appears in the spanwise direction for the turbulent kinetic energy (TKE) and vortical structures, with the strongest enhancement occurring around regions of upwelling. All the riblet cases examined here exhibit an increased drag compared to the smooth wall case. From the energy dissipation/production point of view, such a drag increase is dominated by the TKE production and the viscous dissipation wake component. While the drag contribution from the TKE production shear component decreases as Λ increases, the drag contribution from the wake component of both the TKE production and viscous dissipation follows the same trend as the intensity of the secondary flow motion. From the work point of view, the drag increase in the riblet case at Λ/δ=0.25 comes mainly from the work of the Reynolds shear stresses, whereas at Λ/δ1, the drag augmentation is dominated by the work of the dispersive stresses. At Λ/δ=0.5, both components play an important role in the increase in the drag, which also exhibits a peak.

1.
K.
Koeltzsch
,
A.
Dinkelacker
, and
R.
Grundmann
, “
Flow over convergent and divergent wall riblets
,”
Exp. Fluids
33
,
346
(
2002
).
2.
H.
Chen
,
F.
Rao
,
X.
Shang
,
D.
Zhang
, and
I.
Hagiwara
, “
Flow over bio-inspired 3D herringbone wall riblets
,”
Exp. Fluids
55
,
1698
(
2014
).
3.
K.
Kevin
,
J. P.
Monty
,
H.
Bai
,
G.
Pathikonda
,
B.
Nugroho
,
J. M.
Barros
,
K. T.
Christensen
, and
N.
Hutchins
, “
Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern
,”
J. Fluid Mech.
813
,
412
(
2017
).
4.
F.
Xu
,
S.
Zhong
, and
S.
Zhang
, “
Statistical analysis of vortical structures in turbulent boundary layer over directional grooved surface pattern with spanwise heterogeneity
,”
Phys. Fluids
31
,
085110
(
2019
).
5.
K.
Kevin
,
J.
Monty
, and
N.
Hutchins
, “
Turbulent structures in a statistically three-dimensional boundary layer
,”
J. Fluid Mech.
859
,
543
(
2019
).
6.
T.
Guo
,
S.
Zhong
, and
T.
Craft
, “Secondary flow in a laminar boundary layer developing over convergent-divergent riblets,”
Int. J. Heat Fluid Flow
84
,
108598
(
2020
).
7.
T.
Guo
,
S.
Zhong
, and
T.
Craft
, “
Drag decomposition of laminar channel flows developing over convergent–divergent riblets
,”
Eur. J. Mech.-B/Fluids
92
,
191
(
2022
).
8.
P.
Quan
,
S.
Zhong
,
Q.
Liu
, and
L.
Li
, “
Attenuation of flow separation using herringbone riblets at M∞ = 5
,”
AIAA J.
57
,
142
(
2019
).
9.
Q.
Liu
,
S.
Zhong
, and
L.
Li
, “
Effects of bio-inspired micro-scale surface patterns on the profile losses in a linear cascade
,”
J. Turbomach.
141
,
121006
(
2019
).
10.
B.
Nugroho
,
N.
Hutchins
, and
J.
Monty
, “
Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness
,”
Int. J. Heat Fluid Flow
41
,
90
(
2013
).
11.
H.
Benschop
and
W.-P.
Breugem
, “Drag reduction by herringbone riblet texture in direct numerical simulations of turbulent channel flow,”
J. Turbul
18
,
717
759
(
2017
).
12.
T.
Guo
,
S.
Zhong
, and
T.
Craft
, “
Control of laminar flow separation over a backward-facing rounded ramp with C-D riblets—The effects of riblet height, spacing and yaw angle
,”
Int. J. Heat Fluid Flow
85
,
108629
(
2020
).
13.
A. G.
Kravchenko
,
H.
Choi
, and
P.
Moin
, “
On the relation of near‐wall streamwise vortices to wall skin friction in turbulent boundary layers
,”
Phys. Fluids A
5
,
3307
(
1993
).
14.
M.
Yoon
,
J.
Ahn
,
J.
Hwang
, and
H. J.
Sung
, “
Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows
,”
Phys. Fluids
28
,
081702
(
2016
).
15.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
(
2002
).
16.
Y.
Kametani
and
K.
Fukagata
, “
Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction
,”
J. Fluid Mech.
681
,
154
(
2011
).
17.
M.
Yoon
,
J.
Hwang
,
J.
Lee
,
H. J.
Sung
, and
J.
Kim
, “
Large-scale motions in a turbulent channel flow with the slip boundary condition
,”
Int. J. Heat Fluid Flow
61
,
96
(
2016
).
18.
J.
Yao
,
X.
Chen
, and
F.
Hussain
, “
Reynolds number effect on drag control via spanwise wall oscillation in turbulent channel flows
,”
Phys. Fluids
31
,
085108
(
2019
).
19.
N.
Renard
and
S.
Deck
, “
A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
,”
J. Fluid Mech.
790
,
339
(
2016
).
20.
W.
Li
,
Y.
Fan
,
D.
Modesti
, and
C.
Cheng
, “
Decomposition of the mean skin-friction drag in compressible turbulent channel flows
,”
J. Fluid Mech.
875
,
101
(
2019
).
21.
Y.
Peet
and
P.
Sagaut
, “
Theoretical prediction of turbulent skin friction on geometrically complex surfaces
,”
Phys. Fluids
21
,
105105
(
2009
).
22.
V.
Nikora
,
T.
Stoesser
,
S. M.
Cameron
,
M.
Stewart
,
K.
Papadopoulos
,
P.
Ouro
,
R.
McSherry
,
A.
Zampiron
,
I.
Marusic
, and
R. A.
Falconer
, “
Friction factor decomposition for rough-wall flows: Theoretical background and application to open-channel flows
,”
J. Fluid Mech.
872
,
626
(
2019
).
23.
W.
Ni
,
L.
Lu
,
C.
Ribault
, and
J.
Fang
, “
Direct numerical simulation of supersonic turbulent boundary layer with spanwise wall oscillation
,”
Energies
9
,
154
(
2016
).
24.
W.
Ni
,
L.
Lu
,
J.
Fang
,
C.
Moulinec
, and
Y.
Yao
, “
Large-scale streamwise vortices in turbulent channel flow induced by active wall actuations
,”
Flow, Turbul. Combust.
100
,
651
(
2018
).
25.
W.
Ni
,
L.
Lu
,
J.
Fang
,
C.
Moulinec
,
D. R.
Emerson
, and
Y.
Yao
, “
Flow separation control over a rounded ramp with spanwise alternating wall actuation
,”
Phys. Fluids
31
,
015101
(
2019
).
26.
J.
Fang
,
F.
Gao
,
C.
Moulinec
, and
D. R.
Emerson
, “
An improved parallel compact scheme for domain‐decoupled simulation of turbulence
,”
Int. J. Numer. Methods Fluids
90
,
479
(
2019
).
27.
V.
Nikora
,
I.
McEwan
,
S.
McLean
,
S.
Coleman
,
D.
Pokrajac
, and
R.
Walters
, “
Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background
,”
J. Hydraul. Eng.
133
,
873
(
2007
).
28.
C.
Vanderwel
,
A.
Stroh
,
J.
Kriegseis
,
B.
Frohnapfel
, and
B.
Ganapathisubramani
, “
The instantaneous structure of secondary flows in turbulent boundary layers
,”
J. Fluid Mech.
862
,
845
(
2019
).
29.
T.
Medjnoun
,
C.
Vanderwel
, and
B.
Ganapathisubramani
, “
Effects of heterogeneous surface geometry on secondary flows in turbulent boundary layers
,”
J. Fluid Mech.
886
,
A31
(
2020
).
30.
W.
Reynolds
and
A.
Hussain
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
,
263
(
1972
).
31.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
(
1999
).
32.
F.
Xu
,
S.
Zhong
, and
S.
Zhang
, “
Experimental study on secondary flow in turbulent boundary layer over spanwise heterogeneous microgrooves
,”
Phys. Fluids
32
,
035109
(
2020
).
33.
C.
Vanderwel
and
B.
Ganapathisubramani
, “
Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers
,”
J. Fluid Mech.
774
,
R2
(
2015
).
34.
D.
Chung
,
J. P.
Monty
, and
N.
Hutchins
, “
Similarity and structure of wall turbulence with lateral wall shear stress variations
,”
J. Fluid Mech.
847
,
591
(
2018
).
35.
D. D.
Wangsawijaya
,
R.
Baidya
,
D.
Chung
,
I.
Marusic
, and
N.
Hutchins
, “
The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows
,”
J. Fluid Mech.
894
,
A7
(
2020
).
36.
W.
Anderson
,
J. M.
Barros
,
K. T.
Christensen
, and
A.
Awasthi
, “
Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness
,”
J. Fluid Mech.
768
,
316
(
2015
).
37.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices in channel flow
,”
J. Fluid Mech.
387
,
353
(
1999
).
38.
J. H.
Lee
,
H. J.
Sung
, and
P.-Å.
Krogstad
, “
Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
,”
J. Fluid Mech.
669
,
397
(
2011
).
39.
E.
Mignot
,
E.
Barthélemy
, and
D.
Hurther
, “
Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows
,”
J. Fluid Mech.
618
,
279
(
2009
).
40.
J.
Yuan
and
U.
Piomelli
, “
Roughness effects on the Reynolds stress budgets in near-wall turbulence
,”
J. Fluid Mech.
760
,
R1
(
2014
).
41.
M. R.
Raupach
,
R. A.
Antonia
, and
S.
Rajagopalan
, “
Rough-wall turbulent boundary layers
,”
Appl. Mech. Rev.
44
,
1–25
(
1991
).
42.
M.
De Marchis
,
E.
Napoli
, and
V.
Armenio
, “
Turbulence structures over irregular rough surfaces
,”
J. Turbul.
11
,
N3
(
2010
).
43.
P.
Forooghi
,
A.
Stroh
,
P.
Schlatter
, and
B.
Frohnapfel
, “
Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: A systematic study on the effect of surface morphology on turbulence
,”
Phys. Rev. Fluids
3
,
044605
(
2018
).
You do not currently have access to this content.