In this paper, we develop a multivariate regression model and a neural network model to predict the Reynolds number (Re) and Nusselt number in turbulent thermal convection. We compare their predictions with those of earlier models of convection: Grossmann–Lohse [Phys. Rev. Lett. 86, 3316 (2001)], revised Grossmann–Lohse [Phys. Fluids 33, 015113 (2021)], and Pandey–Verma [Phys. Rev. E 94, 053106 (2016)] models. We observe that although the predictions of all the models are quite close to each other, the machine-learning models developed in this work provide the best match with the experimental and numerical results.
References
1.
S.
Chandrasekhar
, Hydrodynamic and Hydromagnetic Stability
(Dover Publications
, Oxford
, 1981
).2.
G.
Ahlers
, S.
Grossmann
, and D.
Lohse
, “Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,” Rev. Mod. Phys.
81
, 503
–537
(2009
).3.
F.
Chillà
and J.
Schumacher
, “New perspectives in turbulent Rayleigh-Bénard convection
,” Eur. Phys. J. E
35
, 58
(2012
).4.
E. D.
Siggia
, “High Rayleigh number convection
,” Annu. Rev. Fluid Mech.
26
, 137
–168
(1994
).5.
K.-Q.
Xia
, “Current trends and future directions in turbulent thermal convection
,” Theor. Appl. Mech. Lett.
3
, 052001
(2013
).6.
M. K.
Verma
, Physics of Buoyant Flows: From Instabilities to Turbulence
(World Scientific
, Singapore
, 2018
).7.
W. V. R.
Malkus
, “The heat transport and spectrum of thermal turbulence
,” Proc. R. Soc. London, Ser. A
225
, 196–212
(1954
).8.
B. I.
Shraiman
and E. D.
Siggia
, “Heat transport in high-Rayleigh-number convection
,” Phys. Rev. A
42
, 3650
–3653
(1990
).9.
S.
Cioni
, S.
Ciliberto
, and J.
Sommeria
, “Strongly turbulent Rayleigh–Bénard convection in mercury: Comparison with results at moderate Prandtl number
,” J. Fluid Mech.
335
, 111
–140
(1997
).10.
J. D.
Scheel
and J.
Schumacher
, “Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows
,” Phys. Rev. Fluids
2
, 123501
(2017
).11.
B.
Castaing
, G.
Gunaratne
, L. P.
Kadanoff
, A.
Libchaber
, and F.
Heslot
, “Scaling of hard thermal turbulence in Rayleigh-Bénard convection
,” J. Fluid Mech.
204
, 1
–30
(1989
).12.
X.
Chavanne
, F.
Chillà
, B.
Castaing
, B.
Hebral
, B.
Chabaud
, and J.
Chaussy
, “Observation of the ultimate regime in Rayleigh-Bénard convection
,” Phys. Rev. Lett.
79
, 3648
–3651
(1997
).13.
S.
Horn
, O.
Shishkina
, and C.
Wagner
, “On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol
,” J. Fluid Mech.
724
, 175
–202
(2013
).14.
S.
Wagner
and O.
Shishkina
, “Aspect-ratio dependency of Rayleigh-Bénard convection in box-shaped containers
,” Phys. Fluids
25
, 085110
(2013
).15.
M.
Kaczorowski
and K.-Q.
Xia
, “Turbulent flow in the bulk of Rayleigh–Bénard convection: Small-scale properties in a cubic cell
,” J. Fluid Mech.
722
, 596
–617
(2013
).16.
J. J.
Niemela
and K. R.
Sreenivasan
, “Confined turbulent convection
,” J. Fluid Mech.
481
, 355
–384
(2003
).17.
D.
Funfschilling
, E.
Brown
, A.
Nikolaenko
, and G.
Ahlers
, “Heat transport in turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger
,” J. Fluid Mech.
536
, 145
–154
(2005
).18.
R. J. A. M.
Stevens
, R.
Verzicco
, and D.
Lohse
, “Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection
,” J. Fluid Mech.
643
, 495
–507
(2010
).19.
D.-L.
Dong
, B.-F.
Wang
, Y.-H.
Dong
, Y.-X.
Huang
, N.
Jiang
, Y.-L.
Liu
, Z.-M.
Lu
, X.
Qiu
, Z.-Q.
Tang
, and Q.
Zhou
, “Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection
,” Phys. Fluids
32
, 045114
(2020
).20.
U.
Madanan
and R. J.
Goldstein
, “High-Rayleigh-number thermal convection of compressed gases in inclined rectangular enclosures
,” Phys. Fluids
32
, 017103
(2020
).21.
M.
Vial
and R. H.
Hernández
, “Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
,” Phys. Fluids
29
, 074103
(2017
).22.
K.-Q.
Xia
, S.
Lam
, and S.-Q.
Zhou
, “Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection
,” Phys. Rev. Lett.
88
, 064501
(2002
).23.
R.
Verzicco
and R.
Camussi
, “Prandtl number effects in convective turbulence
,” J. Fluid Mech.
383
, 55
–73
(1999
).24.
J. J.
Niemela
, L.
Skrbek
, K. R.
Sreenivasan
, and R. J.
Donnelly
, “The wind in confined thermal convection
,” J. Fluid Mech.
449
, 169
–178
(2001
).25.
S.
Lam
, X.-D.
Shang
, S.-Q.
Zhou
, and K.-Q.
Xia
, “Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection
,” Phys. Rev. E
65
, 066306
(2002
).26.
M. S.
Emran
and J.
Schumacher
, “Fine-scale statistics of temperature and its derivatives in convective turbulence
,” J. Fluid Mech.
611
, 13
–34
(2008
).27.
G.
Silano
, K. R.
Sreenivasan
, and R.
Verzicco
, “Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10–1 and 104 and Rayleigh numbers between 105 and 109
,” J. Fluid Mech.
662
, 409
–446
(2010
).28.
M. K.
Verma
, P. K.
Mishra
, A.
Pandey
, and S.
Paul
, “Scalings of field correlations and heat transport in turbulent convection
,” Phys. Rev. E
85
, 016310
(2012
).29.
A.
Pandey
and M. K.
Verma
, “Scaling of large-scale quantities in Rayleigh-Bénard convection
,” Phys. Fluids
28
, 095105
(2016
).30.
A.
Pandey
, A.
Kumar
, A. G.
Chatterjee
, and M. K.
Verma
, “Dynamics of large-scale quantities in Rayleigh-Bénard convection
,” Phys. Rev. E
94
, 053106
(2016
).31.
E.
Brown
, D.
Funfschilling
, and G.
Ahlers
, “Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection
,” J. Stat. Mech. Theor. Exp.
2007
, P10005
.32.
R. H.
Kraichnan
, “Turbulent thermal convection at arbitrary Prandtl number
,” Phys. Fluids
5
, 1374
–1389
(1962
).33.
D.
Lohse
and F.
Toschi
, “Ultimate state of thermal convection
,” Phys. Rev. Lett.
90
, 034502
(2003
).34.
S. S.
Pawar
and J. H.
Arakeri
, “Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube
,” Phys. Rev. Fluids
1
, 042401(R)
(2016
).35.
L. E.
Schmidt
, E.
Calzavarini
, D.
Lohse
, and F.
Toschi
, “Axially homogeneous Rayleigh-Bénard convection in a cylindrical cell
,” J. Fluid Mech.
691
, 52
–68
(2012
).36.
P.-E.
Roche
, B.
Castaing
, B.
Chabaud
, and B.
Hebral
, “Observation of the 1/2 power law in Rayleigh-Bénard convection
,” Phys. Rev. E
63
, 045303(R)
(2001
).37.
G.
Ahlers
, X.
He
, D.
Funfschilling
, and E.
Bodenschatz
, “Heat transport by turbulent Rayleigh-Bénard convection for and : Aspect ratio T = 0.50
,” New J. Phys.
12
, 103012
(2012
).38.
X.
He
, D.
Funfschilling
, H.
Nobach
, E.
Bodenschatz
, and G.
Ahlers
, “Transition to the ultimate state of turbulent Rayleigh-Bénard convection
,” Phys. Rev. Lett.
108
, 024502
(2012
).39.
J. J.
Niemela
, L.
Skrbek
, K. R.
Sreenivasan
, and R. J.
Donnelly
, “Turbulent convection at very high Rayleigh numbers
,” Nature
404
, 837
–840
(2000
).40.
P.
Urban
, P.
Hanzelka
, T.
Kralik
, V.
Musilová
, A.
Srnka
, and L.
Skrbek
, “Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh-Bernard convection at very high Rayleigh numbers
,” Phys. Rev. Lett.
109
, 154301
(2012
).41.
S.
Grossmann
and D.
Lohse
, “Scaling in thermal convection: A unifying theory
,” J. Fluid Mech.
407
, 27
–56
(2000
).42.
S.
Grossmann
and D.
Lohse
, “Thermal convection for large Prandtl numbers
,” Phys. Rev. Lett.
86
, 3316
–3319
(2001
).43.
S.
Bhattacharya
, M. K.
Verma
, and R.
Samtaney
, “Revisiting Reynolds and Nusselt numbers in turbulent thermal convection
,” Phys. Fluids
33
, 015113
(2021
).44.
S.
Bhattacharya
, A.
Pandey
, A.
Kumar
, and M. K.
Verma
, “Complexity of viscous dissipation in turbulent thermal convection
,” Phys. Fluids
30
, 031702
(2018
).45.
S.
Bhattacharya
, R.
Samtaney
, and M. K.
Verma
, “Scaling and spatial intermittency of thermal dissipation in turbulent convection
,” Phys. Fluids
31
, 075104
(2019
).46.
E. J.
Parish
and K.
Duraisamy
, “A paradigm for data-driven predictive modeling using field inversion and machine learning
,” J. Comput. Phys.
305
, 758
–774
(2016
).47.
E.
Fonda
, A.
Pandey
, J.
Schumacher
, and K. R.
Sreenivasan
, “Deep learning in turbulent convection networks
,” Proc. Natl. Acad. Sci. U.S.A.
116
, 8667
–8672
(2019
).48.
S.
Pandey
and J.
Schumacher
, “Reservoir computing model of two-dimensional turbulent convection
,” Phys. Rev. Fluids
5
, 113506
(2020
).49.
S.
Pandey
, J.
Schumacher
, and K. R.
Sreenivasan
, “A perspective on machine learning in turbulent flows
,” J. Turbul.
21
, 567
–584
(2020
).50.
S. L.
Brunton
, B. R.
Noack
, and P.
Koumoutsakos
, “Machine learning for fluid mechanics
,” Annu. Rev. Fluid Mech.
52
, 477
–508
(2020
).51.
I.
Goodfellow
, Y.
Bengio
, and A.
Courville
, Deep Learning
(The MIT Press
, Cambridge, MA
, 2016
).52.
T.
Hastie
, R.
Tibshirani
, and J.
Friedman
, The Elements of Statistical Learning
(Springer
, New York
, 2009
).53.
54.
R. J. A. M.
Stevens
, E. P.
van der Poel
, S.
Grossmann
, and D.
Lohse
, “The unifying theory of scaling in thermal convection: The updated prefactors
,” J. Fluid Mech.
730
, 295
–308
(2013
).55.
M.
Lesieur
, Turbulence in Fluids
(Springer-Verlag
, Dordrecht
, 2008
).56.
M. K.
Verma
, Energy Trasnfers in Fluid Flows: Multiscale and Spectral Perspectives
(Cambridge University Press
, Cambridge
, 2019
).57.
S.
Bhattacharya
, S.
Sadhukhan
, A.
Guha
, and M. K.
Verma
, “Similarities between the structure functions of thermal convection and hydrodynamic turbulence
,” Phys. Fluids
31
, 115107
(2019
).58.
J. D.
Scheel
, E.
Kim
, and K. R.
White
, “Thermal and viscous boundary layers in turbulent Rayleigh–Bénard convection
,” J. Fluid Mech.
711
, 281
–305
(2012
).59.
N.
Shi
, M. S.
Emran
, and J.
Schumacher
, “Boundary layer structure in turbulent Rayleigh–Bénard convection
,” J. Fluid Mech.
706
, 5
–33
(2012
).60.
R. J.
Samuel
, S.
Bhattacharya
, A.
Asad
, S.
Chatterjee
, M. K.
Verma
, R.
Samtaney
, and S. F.
Anwer
, “SARAS: A general-purpose PDE solver for fluid dynamics
,” J. Open Source Software
6
, 2095
(2021
).61.
M. K.
Verma
, R. J.
Samuel
, S.
Chatterjee
, S.
Bhattacharya
, and A.
Asad
, “Challenges in fluid flow simulations using exascale computing
,” SN Comput. Sci.
1
, 178
(2020
).62.
S.
Bhattacharya
, M. K.
Verma
, and R.
Samtaney
, “Prandtl number dependence of the small-scale properties in turbulent Rayleigh-Bénard convection
,” Phys. Rev. Fluids
6
, 063501
(2021
).63.
C. F.
Jekel
and G.
Venter
, see https://github.com/cjekel/piecewise_linear_fit_py for “pwlf: A python library for fitting 1D continuous piecewise linear functions (2019
)”64.
E.
Frank
, M.
Hall
, G.
Holmes
, R.
Kirkby
, B.
Pfahringer
, I. H.
Witten
, and L.
Trigg
, “Weka-A machine learning workbench for data mining
,” in Data Mining and Knowledge Discovery Handbook
(Springer
, 2009
), pp. 1269
–1277
.65.
K.
Hornik
, M.
Stinchcombe
, and H.
White
, “Multilayer feedforward networks are universal approximators
,” Neural Networks
2
, 359
–366
(1989
).66.
67.
68.
X.
Zhu
, V.
Mathai
, R. J. A. M.
Stevens
, R.
Verzicco
, and D.
Lohse
, “Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection
,” Phys. Rev. Lett.
120
, 144502
(2018
).69.
K. P.
Iyer
, J. D.
Scheel
, J.
Schumacher
, and K. R.
Sreenivasan
, “Classical 1/3 scaling of convection holds up to Ra
,” Proc. Natl. Acad. Sci. U.S.A
117
, 7594
(2020
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.