When a laminar inclined circular jet impinges on a horizontal surface, it forms a non-circular hydraulic jump resulting from the non-axisymmetric flow. In this study, we develop an integral approach in the boundary-layer (near impingement) and thin-film regions to theoretically analyze the flow field and the hydraulic jumps structure. We particularly explore the interplay among inertia, gravity, viscosity, and the effective inclination angle on the non-axisymmetric flow. The boundary-layer height exhibits an azimuthal dependence at a strong gravity level only; however, the thin film thickness as well as the hydraulic jump profile shows a strong non-axisymmetric behavior at all gravity levels. In contrast to the existing literature, the present study accounts for the presence of the boundary layer near impingement and the azimuthal flow. We demonstrate that the azimuthal flow component cannot be neglected in the presence of gravity. The theory is validated against existing experimental results for the inclined jet of water.

1.
Alimohammadi
,
S.
,
Dinneen
,
P.
,
Persoons
,
T.
, and
Murray
,
D. B.
, “
Thermal management using pulsating jet cooling technology
,”
J. Phys.: Conf. Ser.
525
,
012011
(
2014
).
2.
Baghel
,
K.
,
Sridharan
,
A.
, and
Murallidharan
,
J. S.
, “
Experimental and numerical study of inclined free surface liquid jet impingement
,”
Int. J. Therm. Sci.
154
,
106389
(
2020
).
3.
Bohr
,
T.
,
Dimon
,
P.
, and
Putkaradze
,
V.
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
4.
Bohr
,
T.
,
Ellegaard
,
C.
,
Hansen
,
A. E.
, and
Haaning
,
A.
, “
Hydraulic jumps, flow separation and wave breaking: An experimental study
,”
Physica B
228
,
1
10
(
1996
).
5.
Bohr
,
T.
,
Putkaradze
,
V.
, and
Watanabe
,
S.
, “
Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows
,”
Phys. Rev. Lett.
79
,
1038
1041
(
1997
).
6.
Brechet
,
Y.
, and
Néda
,
Z.
, “
On the circular hydraulic jump
,”
Am. J. Phys.
67
(
8
),
723
731
(
1999
).
7.
Bush
,
J. W. M.
, and
Aristoff
,
J. M.
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
8.
Bush
,
J. W. M.
,
Aristoff
,
J. M.
, and
Hosoi
,
A. E.
, “
An experimental investigation of the stability of the circular hydraulic jump
,”
J. Fluid Mech.
558
,
33
52
(
2006
).
9.
Craik
,
A.
,
Latham
,
R.
,
Fawkes
,
M.
, and
Gibbon
,
P.
, “
The circular hydraulic jump
,”
J. Fluid Mech.
112
,
347
362
(
1981
).
10.
Dressaire
,
E.
,
Courbin
,
L.
,
Crest
,
J.
, and
Stone
,
H.
, “
Inertia dominated thin-film flows over microdecorated surfaces
,”
Phys. Fluids
22
,
073602
(
2010
).
11.
Duchesne
,
A.
,
Lebon
,
L.
, and
Limat
,
L.
, “
Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection
,”
EPL (Europhys. Lett.)
107
(
5
),
54002
(
2014
).
12.
Ellegaard
,
C.
,
Hansen
,
A. E.
, and
Haaning
,
A.
, “
Experimental results on flow separation and transitions in the circular hydraulic jump
,”
Phys. Scr.
T67
,
105
110
(
1996
).
13.
Ellegaard
,
C.
,
Hansen
,
A. E.
,
Haaning
,
A.
,
Hansen
,
K.
,
Marcussen
,
A.
,
Bohr
,
T.
,
Hansen
,
J. L.
, and
Watanabe
,
S.
, “
Creating corners in kitchen sinks
,”
Nature
392
,
767
(
1998
).
14.
Fernandez-Feria
,
R.
,
Sanmiguel-Rojas
,
E.
, and
Benilov
,
E. S.
, “
On the origin and structure of a stationary circular hydraulic jump
,”
Phys. Fluids
31
,
072104
(
2019
).
15.
Higuera
,
F. J.
, “
The hydraulic jump in a viscous laminar flow
,”
J. Fluid Mech.
274
,
69
92
(
1994
).
16.
Ishigi
,
S.
,
Nakanishi
,
S.
,
Mizuno
,
M.
, and
Imamura
,
T.
, “
Heat transfer of the impinging round water jet in the interference zone of film flow along the wall
,”
Bull. JSME
20
(
139
),
85
92
(
1977
).
17.
Jörg
,
J.
,
Taraborrelli
,
S.
,
Sarriegui
,
G.
,
de Doncker
,
R. W.
,
Kneer
,
R.
, and
Rohlfs
,
W.
, “
Direct single impinging jet cooling of a MOSFET power electronic module
,”
IEEE Trans. Power Electron.
33
(
5
),
4224
4237
(
2018
).
18.
Kasimov
,
A. R.
, “
A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue
,”
J. Fluid Mech.
601
,
189
198
(
2008
).
19.
Kate
,
R. P.
,
Das
,
P. K.
, and
Chakraborty
,
S.
, “
Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface
,”
J. Fluid Mech.
573
,
247
263
(
2007a
).
20.
Kate
,
R. P.
,
Das
,
P. K.
, and
Chakraborty
,
S.
, “
Hydraulic jumps with corners due to obliquely inclined circular liquid jets
,”
Phys. Rev. E
75
(
5
),
056310
(
2007b
).
21.
Kate
,
R. P.
,
Das
,
P. K.
, and
Chakraborty
,
S.
, “
Investigation on non-circular hydraulic jumps formed due to obliquely impinging circular liquid jets
,”
Exp. Therm. Fluid Sci.
32
(
8
),
1429
1439
(
2008
).
22.
Kate
,
R. P.
,
Das
,
P. K.
, and
Chakraborty
,
S.
, “
Effects of jet obliquity on hydraulic jumps formed by impinging circular liquid jets on a moving horizontal plate
,”
J. Fluids Eng., Trans. ASME
131
(
3
),
0345021
0345025
(
2009
).
23.
Khayat
,
R. E.
, “
Impinging planar jet flow on a horizontal surface with slip
,”
J. Fluid Mech.
808
,
258
289
(
2016
).
24.
Khayat
,
R. E.
, and
Kim
,
K.
, “
Thin-film flow of a viscoelastic fluid on an axisymmetric substrate of arbitrary shape
,”
J. Fluid Mech.
552
,
37
71
(
2006
).
25.
Ki̇bar
,
A.
, and
Yigit
,
K. S.
, “
The spreading profile of an impinging liquid jet on the hydrophobic surfaces
,”
Sigma J. Eng. Nat. Sci.
36
(
3
),
609
618
(
2018
).
26.
Kuraan
,
A. M.
,
Moldovan
,
S. I.
, and
Choo
,
K.
, “
Heat transfer and hydrodynamics of free water jet impingement at low nozzle-to-plate spacings
,”
Int. J. Heat Mass Transfer
108
,
2211
2216
(
2017
).
27.
Lienhard
,
J.
, “
Heat transfer by impingement of circular free-surface liquid jets
,” in
18th National and 7th ISHMT-ASME Heat and Mass Transfer Conference IIT
(
2006
), pp.
1
17
.
28.
Liu
,
X.
,
Gabour
,
L. A.
, and
Lienhard
,
J. H.
, “
Stagnation-point heat transfer during impingement of laminar liquid jets: Analysis including surface tension
,”
ASME Heat Transfer
115
,
99
105
(
1993
).
29.
Liu
,
X.
, and
Lienhard
,
J. H.
, “
The hydraulic jump in circular jet impingement and in other thin liquid films
,”
Exp. Fluids
15
,
108
116
(
1993
).
30.
Martens
,
E. A.
,
Watanabe
,
S.
, and
Bohr
,
T.
, “
Model for polygonal hydraulic jumps
,”
Phys. Rev. E
85
(
3
),
036316
(
2012
).
31.
Nakoryakov
,
V. E.
,
Pokusaev
,
B. G.
, and
Troyan
,
E. N.
, “
Impingement of an axisymmetric liquid jet on a barrier
,”
Int. J. Heat Mass Transfer
21
(
9
),
1175
1184
(
1978
).
32.
Prince
,
J. F.
,
Maynes
,
D.
, and
Crockett
,
J.
, “
Analysis of laminar jet impingement and hydraulic jump on a horizontal surface with slip
,”
Phys. Fluids
24
(
10
),
102103
(
2012
).
33.
Prince
,
J. F.
,
Maynes
,
D.
, and
Crockett
,
J.
, “
Jet impingement and the hydraulic jump on horizontal surfaces with anisotropic slip
,”
Phys. Fluids
26
(
4
),
042104
(
2014
).
34.
Rao
,
A.
, and
Arakeri
,
J. H.
, “
Integral analysis applied to radial film flows
,”
Int. J. Heat Mass Transfer
41
,
275
2767
(
1998
).
35.
Rayleigh
,
Lord
, “
On the theory of long waves and bores
,”
Proc. R. Soc. London, Ser. A
90
(
619
),
324
328
(
1914
).
36.
Rojas
,
N. O.
,
Argentina
,
M.
,
Cerda
,
E.
, and
Tirapegui
,
E.
, “
Inertial lubrication theory
,”
Phys. Rev. Lett.
104
(
18
),
187801
(
2010
).
37.
Rojas
,
N.
, and
Tirapegui
,
E.
, “
Harmonic solutions for polygonal hydraulic jumps in thin fluid films
,”
J. Fluid Mech.
780
,
99
119
(
2015
).
38.
Schlichting
,
H.
, and
Gersten
,
K.
,
Boundary-Layer Theory
, 8th ed. (
Springer
,
Berlin, Heidelberg
,
2000
).
39.
Sparrow
,
E. M.
,
Asme
,
F.
, and
Lovell
,
B. J.
, “
Heat transfer characteristics of an obliquely impinging circular jet
,”
Int. J. Heat Fluid Flow
102
(
2
),
202
209
(
1980
).
40.
Tani
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
41.
Teymourtash
,
A. R.
, and
Mokhlesi
,
M.
, “
Experimental investigation of stationary and rotational structures in non-circular hydraulic jumps
,”
J. Fluid Mech.
762
,
344
360
(
2015
).
42.
Wang
,
Y.
, and
Khayat
,
R. E.
, “
Impinging jet flow and hydraulic jump on a rotating disk
,”
J. Fluid Mech.
839
,
525
560
(
2018
).
43.
Wang
,
Y.
, and
Khayat
,
R. E.
, “
The role of gravity in the prediction of the circular hydraulic jump radius for high-viscosity liquids
,”
J. Fluid Mech.
862
,
128
161
(
2019
).
44.
Wang
,
Y.
, and
Khayat
,
R. E.
, “
The influence of heating on liquid jet spreading and hydraulic jump
,”
J. Fluid Mech.
883
,
A59
(
2020
).
45.
Wang
,
Y.
, and
Khayat
,
R. E.
, “
The effects of gravity and surface tension on the circular hydraulic jump for low- and high-viscosity liquids: A numerical investigation
,”
Phys. Fluids
33
(
1
),
012105
(
2021
).
46.
Watson
,
E. J.
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
(
3
),
481
499
(
1964
).
47.
Zhao
,
J.
, and
Khayat
,
R. E.
, “
Spread of a non-Newtonian liquid jet over a horizontal plate
,”
J. Fluid Mech.
613
,
411
443
(
2008
).
48.
Zumbrunnen
,
D. A.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
, “
A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate
,”
Wärme-Und Stoffübertragung
27
,
311
319
(
1992
).
You do not currently have access to this content.