This study investigates the characteristics of flow-field patterns generated by burst-mode actuation of a dielectric-barrier-discharge plasma actuator in quiescent air. Particle-image velocimetry and background-oriented schlieren measurements conducted over a wide range of burst-signal parameters show that there are three types of flow-field patterns. Type 1 is the wall-surface jet seen in continuous mode actuation; type 2 features periodical independent vortices traveling along the wall surface; type 3 features such vortices moving away from the surface. The vortex sizes in types 2 and 3 are proportional to the energy consumed in generating one vortex. When the time-averaged jet velocity estimated by the power consumption is used as the characteristic velocity in the nondimensional scaling law, the time profiles of the vortex location in the type 3 flow-field pattern collapse into a single line, independently of the burst frequency and ratio. However, in the initial phase, the nondimensional vortex-core motion is better described using the jet velocity in continuous-mode actuation as the characteristic velocity. The transitions of the flow-field pattern from type 1 to type 3 result from interference between cyclically generated vortices and depend on the inter-vortex distances and the energy consumed in generating one vortex.

1.
N.
Benard
and
E.
Moreau
, “
Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control
,”
Exp. Fluids
55
,
1846
(
2014
).
2.
E.
Moreau
, “
Airflow control by non-thermal plasma actuators
,”
J. Phys. D: Appl. Phys.
40
,
3
(
2007
).
3.
F. O.
Thomas
,
T. C
,
Corke
,
M.
Iqbal
,
A.
Kozlov
, and
D.
Schatzman
, “
Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control
,”
AIAA J.
47
,
9
(
2009
).
4.
C. L.
Enloe
,
T. E.
McLaughlin
,
R. V.
Dyken
,
K. D.
Kachner
,
E. J.
Jumper
,
T. C.
Corke
,
M.
Post
, and
O.
Haddad
, “
Mechanisms and responses of a dielectric barrier plasma actuator: Geometric effects
,”
AIAA J.
42
,
3
(
2004
).
5.
A.
Nakano
and
H.
Nishida
, “
The effect of the voltage waveform on performance of dielectric barrier discharge plasma actuator
,”
J. Appl. Phys.
126
,
173303
(
2019
).
6.
M.
Sato
,
T.
Nonomura
,
K.
Okada
,
K.
Asada
,
H.
Aono
,
A.
Yakeno
,
Y.
Abe
, and
K.
Fuji
, “
Mechanisms for laminar separated-flow control using dielectric-barrier-discharge plasma actuator at low Reynolds number
,”
Phys. Fluids
27
,
117101
(
2015
).
7.
T. C.
Corke
,
H.
Chuan
, and
M. P.
Patel
, “
Plasma flaps and slats: An application of weakly-ionized plasma actuators
,” AIAA Paper No. 2004-2127,
2004
.
8.
A.
Sidorenko
,
B.
Zanin
,
B.
Postnikov
,
A.
Budovsky
,
A.
Starikovskii
,
D.
Roupassov
,
I.
Zavialov
,
N.
Malmuth
,
P.
Smereczniak
, and
J.
Silkey
, “
Pulsed discharge actuators for rectangular wings separation control
,” AIAA Paper No. 2007-941,
2007
.
9.
K.
Fujii
, “
Three flow features behind the flow control authority of DBD plasma actuator: Result of high-fidelity simulations and the related experiments
,”
Appl. Sci.
8
(
4
),
546
(
2018
).
10.
S.
Sekimoto
,
N.
Tanaka
,
T.
Nonomura
,
H.
Nishida
, and
K.
Fujii
, “
Experimental study of burst ratio effect for dielectric-barrier-discharge plasma actuator for separation control
,” AIAA Paper No. 2017-1688,
2017
.
11.
S.
Sekimoto
,
T.
Nonomura
, and
K.
Fujii
, “
Burst-mode frequency effects of dielectric barrier discharge plasma actuator for separation control
,”
AIAA J.
55
,
4
(
2017
).
12.
K.
Suzuki
,
A.
Komuro
,
T.
Nonomura
,
K.
Asai
, and
A.
Ando
, “
Effect of burst ratio on flow separation control using a dielectric barrier discharge plasma actuator at Reynolds number 2.6 × 105
,”
J. Phys. D: Appl. Phys.
54
,
315204
(
2021
).
13.
B.
Vukasinovic
and
A.
Glezer
, “
Transitory fluidic control of turbulent shear flows
,” AIAA Paper No. 2006-3227,
2006
.
14.
R. D.
Whalley
and
K-S.
Choi
, “
The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma
,”
J. Fluid Mech.
703
,
192
203
(
2012
).
15.
B. K.
Mishra
and
P. K.
Panigrahi
, “
Formation and characterization of the vortices generated by a DBD plasma actuator in burst mode
,”
Phys. Fluids
29
,
024104
(
2017
).
16.
M.
Xue
,
C.
Gao
,
H. D.
Xi
, and
F.
Liu
, “
Vortices induced by a dielectric barrier discharge plasma actuator under burst-mode actuation
,”
AIAA J.
58
,
6
(
2020
).
17.
B. K.
Mishra
and
P. K.
Panigrahi
, “
Flow field induced by a dielectric barrier discharge plasma actuator analyzed with bi-orthogonal decomposition
,”
Phys. Fluids
32
,
087112
(
2020
).
18.
D.
Hasegawa
,
K.
Nakano
,
A.
Nakano
, and
H.
Nishida
, “
Numerical study on flow field produced by burst mode actuation of DBD plasma actuator
,” in
Ninth JSME-KSME Thermal and Fluids Engineering Conference
, TFEC9-1109 (
2017
).
19.
M.
Raffel
, “
Background-oriented schlieren (BOS) techniques
,”
Exp. Fluids
56
,
60
(
2015
).
20.
A.
Komuro
,
K.
Tahashima
,
K.
Suzuki
,
S.
Kanno
,
T.
Nonomura
,
T.
Kaneko
,
A.
Ando
, and
K.
Asai
, “
Influence of discharge energy on the lift and drag forces induced by a nanosecond-pulse-driven plasma actuator
,”
Plasma Sources Sci. Technol.
28
,
065006
(
2019
).
21.
Y.
Kaneko
,
H.
Nishida
, and
Y.
Tagawa
, “
Background-oriented schlieren measurement of near-surface density field in surface dielectric-barrier-discharge
,”
Meas. Sci. Technol.
32
,
125402
(
2021
).
You do not currently have access to this content.