Nano- and micrometer particles tend to stick together to form agglomerates in the presence of attractions. An accurate calculation of the drag and lift forces on an agglomerate is a key step for predicting the sedimentation rate, the coagulation rate, the diffusion coefficient, and the mobility of the agglomerate. In this work, particle-resolved direct numerical simulation is used to calculate the drag and lift forces acting on linear and irregular agglomerates formed by spherical particles. For linear agglomerates, the drag coefficient CD follows the sine squared function of the incident angle. The ratio between CD of a linear agglomerate and that for a sphere increases with the agglomerate size, and the increasing rate is a function of the Reynolds number and the incident angle. Based on this observation, explicit expressions are proposed for CD of linear agglomerates at two reference incident angles, 60° and 90°, from which CD at any incident angle can be predicted. A new correlation is also proposed to predict the lift coefficient CL for linear agglomerates. The relative errors for the drag and lift correlations are 2.3% and 4.3%, respectively. The drag coefficient for irregular agglomerates of arbitrary shape is then formulated based on the sphericity and the crosswise sphericity of agglomerates with a relative error of 4.0%. Finally, the distribution of the lift coefficient for irregular agglomerates is presented, which is non-Gaussian and strongly depends on the structure. The mean values and the standard deviations of CL can be well correlated with the Reynolds number.

1.
Akiki
,
G.
, and
Balachandar
,
S.
, “
Shear-induced lift force on spheres in a viscous linear shear flow at finite volume fractions
,”
Phys. Fluids
32
(
11
),
113306
(
2020
).
2.
Akiki
,
G.
,
Jackson
,
T. L.
, and
Balachandar
,
S.
, “
Force variation within arrays of monodisperse spherical particles
,”
Phys. Rev. Fluids
1
(
4
),
044202
(
2016
).
3.
Bäbler
,
M. U.
,
Morbidelli
,
M.
, and
Baldyga
,
J.
, “
Modelling the breakup of solid aggregates in turbulent flows
,”
J. Fluid Mech.
612
,
261
289
(
2008
).
4.
Binder
,
C.
,
Feichtinger
,
C.
,
Schmid
,
H. J.
,
Thürey
,
N.
,
Peukert
,
W.
, and
Rüde
,
U.
, “
Simulation of the hydrodynamic drag of aggregated particles
,”
J. Colloid Interface Sci.
301
(
1
),
155
167
(
2006
).
5.
Binder
,
C.
,
Hartig
,
M. A.
, and
Peukert
,
W.
, “
Structural dependent drag force and orientation prediction for small fractal aggregates
,”
J. Colloid Interface Sci.
331
(
1
),
243
250
(
2009
).
6.
Buettner
,
K. E.
,
Curtis
,
J. S.
, and
Sarkar
,
A.
, “
Fluid-particle drag force measurements from particle-resolved CFD simulations of flow past random arrays of ellipsoidal particles
,”
Chem. Eng. Sci.
235
,
116469
(
2021
).
7.
Chen
,
J.
, and
Li
,
J.
, “
Prediction of drag coefficient and ultimate settling velocity for high-density spherical particles in a cylindrical pipe
,”
Phys. Fluids
32
(
5
),
053303
(
2020
).
8.
Chen
,
S.
, and
Li
,
S.
, “
Collision-induced breakage of agglomerates in homogenous isotropic turbulence laden with adhesive particles
,”
J. Fluid Mech.
902
,
A28
(
2020
).
9.
Chen
,
S.
,
Li
,
S.
, and
Yang
,
M.
, “
Sticking/rebound criterion for collisions of small adhesive particles: Effects of impact parameter and particle size
,”
Powder Technol.
274
,
431
440
(
2015
).
10.
Chen
,
S.
,
Liu
,
W.
, and
Li
,
S.
, “
A fast adhesive discrete element method for random packings of fine particles
,”
Chem. Eng. Sci.
193
,
336
345
(
2019a
).
11.
Chen
,
S.
,
Li
,
S.
, and
Marshall
,
J. S.
, “
Exponential scaling in early-stage agglomeration of adhesive particles in turbulence
,”
Phys. Rev. Fluids
4
(
2
),
024304
(
2019b
).
12.
Chen
,
P.
,
Chen
,
S.
,
Yang
,
M.
, and
Li
,
S.
, “
Falling clouds of particles with finite inertia in viscous flows
,”
Phys. Fluids
33
(
3
),
033314
(
2021
).
13.
Chernyakov
,
A. L.
, “
Hydrodynamic drag of a fractal cluster
,”
J. Exp. Theor. Phys.
93
(
4
),
771
776
(
2001
).
14.
Deen
,
N. G.
,
Peters
,
E. A. J. F.
,
Padding
,
J. T.
, and
Kuipers
,
J. A. M.
, “
Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid flows
,”
Chem. Eng. Sci.
116
,
710
724
(
2014
).
15.
Dietzel
,
M.
, and
Sommerfeld
,
M.
, “
Numerical calculation of flow resistance for agglomerates with different morphology by the lattice-Boltzmann method
,”
Powder Technol.
250
,
122
137
(
2013
).
16.
Duan
,
F.
,
Zhao
,
L.
,
Chen
,
X.
, and
Zhou
,
Q.
, “
Fluid–particle drag and particle–particle drag in low-Reynolds-number bidisperse gas–solid suspensions
,”
Phys. Fluids
32
(
11
),
113311
(
2020
).
17.
Eggersdorfer
,
M. L.
, and
Pratsinis
,
S. E.
, “
Agglomerates and aggregates of nanoparticles made in the gas phase
,”
Adv. Powder Technol.
25
,
71
90
(
2014
).
18.
Esteghamatian
,
A.
,
Euzenat
,
F.
,
Hammouti
,
A.
,
Lance
,
M.
, and
Wachs
,
A.
, “
A stochastic formulation for the drag force based on multiscale numerical simulation of fluidized beds
,”
Int. J. Multiphase Flow
99
,
363
382
(
2018
).
19.
Fang
,
Z.
,
Zhang
,
Y.
,
Zhao
,
S.
,
Li
,
X.
,
Wu
,
X.
, and
Sun
,
L.
, “
An experimental investigation on the settling velocity and drag coefficient of micrometer-sized natural, IG-110, NG-CT-10 and A3-3 graphite particles
,”
J. Aerosol Sci.
155
,
105774
(
2021
).
20.
Friedlander
,
S. K.
,
Smoke, Dust, and Haze
(
Oxford University Press
,
New York
,
2000
).
21.
Fu
,
J.
,
Chen
,
S.
,
Chen
,
P.
, and
Wen
,
C.
, “
Particle-resolved simulation on viscous flow past random and ordered arrays of hot ellipsoidal particles
,”
Int. J. Multiphase Flow
142
,
103736
(
2021
).
22.
Happel
,
J.
, and
Brenner
,
H.
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
1983
).
23.
Higashitani
,
K.
,
Iimura
,
K.
, and
Sanda
,
H.
, “
Simulation of deformation and breakup of large aggregates in flows of viscous fluids
,”
Chem. Eng. Sci.
56
(
9
),
2927
2938
(
2001
).
24.
Hölzer
,
A.
, and
Sommerfeld
,
M.
, “
New simple correlation formula for the drag coefficient of non-spherical particles
,”
Powder Technol.
184
(
3
),
361
365
(
2008
).
25.
Hölzer
,
A.
, and
Sommerfeld
,
M.
, “
Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles
,”
Comput. Fluids
38
(
3
),
572
589
(
2009
).
26.
Iimura
,
K.
, and
Higashitani
,
K. O.
, “
Simulation of the hydrodynamic drag force on aggregates
,”
Adv. Powder Technol.
16
(
1
),
87
96
(
2005
).
27.
Israelachvili
,
J. N.
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
Boston
,
2011
).
28.
Jaworek
,
A.
,
Marchewicz
,
A.
,
Sobczyk
,
A. T.
,
Krupa
,
A.
, and
Czech
,
T.
, “
Two-stage electrostatic precipitators for the reduction of PM2.5 particle emission
,”
Prog. Energy Combust. Sci.
67
,
206
233
(
2018
).
29.
Johnson
,
C. P.
,
Li
,
X.
, and
Logan
,
B. E.
, “
Settling velocities of fractal aggregates
,”
Environ. Sci. Technol.
30
,
1911
1918
(
1996
).
30.
Jones
,
T. B.
,
Electromechanics of Particles
(
Cambridge University Press
,
2005
).
31.
Kim
,
A. S.
, and
Stolzenbach
,
K. D.
, “
The permeability of synthetic fractal aggregates with realistic three-dimensional structure
,”
J. Colloid Interface Sci.
253
(
2
),
315
328
(
2002
).
32.
Kim
,
A. S.
, and
Yuan
,
R.
, “
Hydrodynamics of an ideal aggregate with quadratically increasing permeability
,”
J. Colloid Interface Sci.
285
(
2
),
627
633
(
2005
).
33.
Lattanzi
,
A. M.
,
Tavanashad
,
V.
,
Subramaniam
,
S.
, and
Capecelatro
,
J.
, “
Stochastic models for capturing dispersion in particle-laden flows
,”
J. Fluid Mech.
903
,
A7
(
2020
).
34.
Lattuada
,
M.
,
Wu
,
H.
, and
Morbidelli
,
M.
, “
Hydrodynamic radius of fractal clusters
,”
J. Colloid Interface Sci.
268
(
1
),
96
105
(
2003
).
35.
Li
,
S.
,
Marshall
,
J. S.
,
Liu
,
G.
, and
Yao
,
Q.
, “
Adhesive particulate flow: The discrete-element method and its application in energy and environmental engineering
,”
Prog. Energy Combust. Sci.
37
(
6
),
633
668
(
2011
).
36.
Li
,
S.
,
Ren
,
Y.
,
Biswas
,
P.
, and
Stephen
,
D. T.
, “
Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics
,”
Prog. Energy Combust. Sci.
55
,
1
59
(
2016
).
37.
Li
,
X.
,
Jiang
,
M.
,
Huang
,
Z.
, and
Zhou
,
Q.
, “
Effect of particle orientation on the drag force in random arrays of oblate ellipsoids in low-Reynolds-number flows
,”
AIChE J.
67
,
e17040
(
2021
).
38.
Liu
,
P.
, and
Hrenya
,
C. M.
, “
Cluster-induced deagglomeration in dilute gravity-driven gas–solid flows of cohesive grains
,”
Phys. Rev. Lett.
121
(
23
),
238001
(
2018
).
39.
Lu
,
H.
,
Wang
,
S.
,
Zheng
,
J.
,
Gidaspow
,
D.
,
Ding
,
J.
, and
Li
,
X.
, “
Numerical simulation of flow behavior of agglomerates in gas-cohesive particles fluidized beds using agglomerates-based approach
,”
Chem. Eng. Sci.
65
,
1462
1473
(
2010
).
40.
Mandø
,
M.
, and
Rosendahl
,
L.
, “
On the motion of non-spherical particles at high Reynolds number
,”
Powder Technol.
202
,
1
(
2010
).
41.
Mema
,
I.
,
Mahajan
,
V. V.
,
Fitzgerald
,
B. W.
, and
Padding
,
J. T.
, “
Effect of lift force and hydrodynamic torque on fluidisation of non-spherical particles
,”
Chem. Eng. Sci.
195
,
642
656
(
2019
).
42.
Mola
,
I. A.
,
Fawell
,
P. D.
, and
Small
,
M.
, “
Particle-resolved direct numerical simulation of drag force on permeable, non-spherical aggregates
,”
Chem. Eng. Sci.
218
,
115582
(
2020
).
43.
Motlagh
,
A. A.
,
Grace
,
J. R.
,
Salcudean
,
M.
, and
Hrenya
,
C. M.
, “
New structure-based model for Eulerian simulation of hydrodynamics in gas–solid fluidized beds of Geldart group ‘A’ particles
,”
Chem. Eng. Sci.
120
,
22
36
(
2014
).
44.
Ouchene
,
R.
, “
Numerical simulation and modeling of the hydrodynamic forces and torque acting on individual oblate spheroids
,”
Phys. Fluids
32
(
7
),
073303
(
2020
).
45.
Ouchene
,
R.
,
Khalij
,
M.
,
Tanière
,
A.
, and
Arcen
,
B.
, “
Drag, lift and torque coefficients for ellipsoidal particles: From low to moderate particle Reynolds numbers
,”
Comput. Fluid.
113
,
53
64
(
2015
).
46.
Ouchene
,
R.
,
Khalij
,
M.
,
Arcen
,
B.
, and
Tanière
,
A.
, “
A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers
,”
Powder Technol.
303
,
33
43
(
2016
).
47.
Pitter
,
R. L.
,
Pruppacher
,
H. R.
, and
Hamielec
,
A. E.
, “
A numerical study of viscous flow past a thin oblate spheroid at low and intermediate Reynolds numbers
,”
J. Atmos. Sci.
30
,
125
134
(
1973
).
48.
Qian
,
W.
,
Kronenburg
,
A.
,
Hui
,
X.
,
Lin
,
Y.
, and
Karsch
,
M.
, “
Effects of agglomerate characteristics on their collision kernels in the free molecular regime
,”
J. Aerosol Sci.
159
,
105868
(
2022
).
49.
Renault
,
F.
,
Sancey
,
B.
,
Charles
,
J.
,
Morin-Crini
,
N.
,
Badot
,
P. M.
,
Winterton
,
P.
, and
Crini
,
G.
, “
Chitosan flocculation of cardboard-mill secondary biological wastewater
,”
Chem. Eng. J.
155
(
3
),
775
783
(
2009
).
50.
Richter
,
A.
, and
Nikrityuk
,
P. A.
, “
New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack
,”
Powder Technol.
249
,
463
474
(
2013
).
51.
Rong
,
L. W.
,
Zhou
,
Z. Y.
, and
Yu
,
A. B.
, “
Lattice–Boltzmann simulation of fluid flow through packed beds of uniform ellipsoids
,”
Powder Technol.
285
,
146
156
(
2015
).
52.
Rosendahl
,
L.
, “
Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow
,”
Appl. Math. Modell.
24
,
11
25
(
2000
).
53.
Royer
,
J. R.
,
Evans
,
D. J.
,
Oyarte
,
L.
,
Guo
,
Q.
,
Kapit
,
E.
,
Möbius
,
M. E.
,
Waitukaitis
,
S. R.
, and
Jaeger
,
H. M.
, “
High-speed tracking of rupture and clustering in freely falling granular streams
,”
Nature
459
(
7250
),
1110
1113
(
2009
).
54.
Ruan
,
X.
,
Chen
,
S.
, and
Li
,
S.
, “
Structural evolution and breakage of dense agglomerates in shear flow and Taylor-Green vortex
,”
Chem. Eng. Sci.
211
,
115261
(
2020
).
55.
Ruan
,
X.
,
Chen
,
S.
, and
Li
,
S.
, “
Effect of long-range Coulomb repulsion on adhesive particle agglomeration in homogeneous isotropic turbulence
,”
J. Fluid Mech.
915
,
A131
(
2021
).
56.
Rubinstein
,
G. J.
,
Ozel
,
A.
,
Yin
,
X.
,
Derksen
,
J. J.
, and
Sundaresan
,
S.
, “
Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: Effect of inhomogeneities on the drag force
,”
J. Fluid Mech.
833
,
599
630
(
2017
).
57.
Sanjeevi
,
S. K.
, and
Padding
,
J. T.
, “
On the orientational dependence of drag experienced by spheroids
,”
J. Fluid Mech.
820
,
R1
(
2017
).
58.
Sanjeevi
,
S. K.
, and
Padding
,
J. T.
, “
Hydrodynamic forces on monodisperse assemblies of axisymmetric elongated particles: Orientation and voidage effects
,”
AIChE J.
66
(
6
),
e16951
(
2020
).
59.
Sanjeevi
,
S. K.
,
Kuipers
,
J. A. M.
, and
Padding
,
J. T.
, “
Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers
,”
Int. J. Multiphase Flow
106
,
325
337
(
2018
).
60.
Scheckman
,
J. H.
,
McMurry
,
P. H.
, and
Pratsinis
,
S. E.
, “
Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements
,”
Langmuir
25
(
14
),
8248
8254
(
2009
).
61.
Schiller
,
L.
, and
Naumann
,
A.
, “
Über die grundlegenden Berechnungen bei bei der Schwerkraftaufbereitung
,”
Z. Ver. Dtsch. Ing.
77
,
318
320
(
1933
).
62.
Sommerfeld
,
M.
, and
Lain
,
S.
, “
Stochastic modelling for capturing the behaviour of irregular-shaped non-spherical particles in confined turbulent flows
,”
Powder Technol.
332
,
253
264
(
2018
).
63.
Sommerfeld
,
M.
, and
Qadir
,
Z.
, “
Fluid dynamic forces acting on irregular shaped particles: Simulations by the lattice–Boltzmann method
,”
Int. J. Multiphase Flow
101
,
212
222
(
2018
).
64.
Sundaresan
,
S.
,
Ozel
,
A.
, and
Kolehmainen
,
J.
, “
Toward constitutive models for momentum, species, and energy transport in gas–particle flows
,”
Annu. Rev. Chem. Biomol. Eng.
9
,
61
81
(
2018
).
65.
Tenneti
,
S.
, and
Subramaniam
,
S.
, “
Particle-resolved direct numerical simulation for gas-solid flow model development
,”
Annu. Rev. Fluid Mech.
46
,
199
230
(
2014
).
66.
Tran-Cong
,
S.
,
Gay
,
M.
, and
Michaelides
,
E. E.
, “
Drag coefficients of irregularly shaped particles
,”
Powder Technol.
139
(
1
),
21
32
(
2004
).
67.
Vainshtein
,
P.
,
Shapiro
,
M.
, and
Gutfinger
,
C.
, “
Mobility of permeable aggregates: Effects of shape and porosity
,”
J. Aerosol Sci.
35
(
3
),
383
404
(
2004
).
68.
Vanni
,
M.
, “
Creeping flow over spherical permeable aggregates
,”
Chem. Eng. Sci.
55
(
3
),
685
698
(
2000
).
69.
Veerapaneni
,
S.
, and
Wiesner
,
M. R.
, “
Hydrodynamics of fractal aggregates with radially varying permeability
,”
J. Colloid Interface Sci.
177
,
45
57
(
1996
).
70.
Wang
,
X.
,
Liu
,
K.
, and
You
,
C.
, “
Drag force model corrections based on nonuniform particle distributions in multi-particle systems
,”
Powder Technol.
209
,
112
118
(
2011
).
71.
Wang
,
J.
, “
Continuum theory for dense gas-solid flow: A state-of-the-art review
,”
Chem. Eng. Sci.
215
,
115428
(
2020
).
72.
Yao
,
Y.
, and
Capecelatro
,
J.
, “
Deagglomeration of cohesive particles by turbulence
,”
J. Fluid Mech.
911
,
A10
(
2021
).
73.
Zastawny
,
M.
,
Mallouppas
,
G.
,
Zhao
,
F.
, and
Van Wachem
,
B.
, “
Derivation of drag and lift force and torque coefficients for non-spherical particles in flows
,”
Int. J. Multiphase Flow
39
,
227
239
(
2012
).
74.
Zelenyuk
,
A.
,
Cai
,
Y.
, and
Imre
,
D.
, “
From agglomerates of spheres to irregularly shaped particles: Determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters
,”
Aerosol Sci. Technol.
40
(
3
),
197
217
(
2006
).
75.
Zhao
,
K.
,
Vowinckel
,
B.
,
Hsu
,
T. J.
,
Köllner
,
T.
,
Bai
,
B.
, and
Meiburg
,
E.
, “
An efficient cellular flow model for cohesive particle flocculation in turbulence
,”
J. Fluid Mech.
889
,
R3
(
2020
).
76.
Zhou
,
Y.
,
Wang
,
Z.
,
Qian
,
Y.
,
Yang
,
H.
, and
Wei
,
Y.
, “
Numerical simulation of the flow around two square cylinders using the lattice Boltzmann method
,”
Phys. Fluids
33
(
3
),
037110
(
2021
).
You do not currently have access to this content.