Gel spinning is the industrial method of choice for combining hydrophilic ultra-high molecular weight (UHMW) polymer resins with a hydrophobic support polymer to produce composite filaments for cytapheresis. Cytapheresis is a medical technique for removal of leukocytes from blood. Gel spinning is used to avoid high melt viscosity and thermal sensitivity of UHMW resins and the high melt temperature of the substrate resin but requires the recovery of toxic solvents. The UHMW resin is used because it forms a stable gel phase in the presence of water; a lower molecular weight resin (LMW) simply dissolves. UHMW and LMW resins were both poly(ethylene oxide) (PEO) and the substrate was polyarylsulfone (PAS). The literature indicated PEO undergoes non-oxidative thermal degradation above 200 °C and PAS is processed up to 350 °C. Dynamic oscillatory shear rheometry was used to study 0, 25, 40, 50, 60, and 75 wt. % UHMW PEO in LMW PEO to take advantage of the sensitivity of viscosity to changes in molecular weight and material configuration, indicating degradation. Samples were exposed to 220 °C, 230 °C, 240 °C, 250 °C, 275 °C, and 300 °C temperatures for 5 min to explore conditions that could result in sample degradation. The viscosity decreased less with increasing UHMW PEO content for samples exposed to the same temperature and the viscosity decreased more with increasing exposure temperature for samples with the same UHMW PEO content. Parameters were regressed from observed data to predict the change in molecular weight via empiricisms relating the viscosity to molecular weight, shear rate, temperature, and time.

1.
Y.
Tang
 et al, “
A review on models and simulations of membrane formation via phase inversion processes
,”
J. Membr. Sci.
640
,
119810
(
2021
).
2.
Z.
Wang
,
M.
An
,
H.
Xu
,
Y.
Lv
,
F.
Tian
, and
Q.
Gu
, “
Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution
,”
Polymer
120
,
244
254
(
2017
).
3.
C.
Witschi
and
E.
Doelker
, “
Residual solvents in pharmaceutical products: Acceptable limits, influences on physicochemical properties, analytical methods and documented values
,”
Eur. J. Pharm. Biopharm.
43
(
3
),
215
242
(
1997
).
4.
K.
Grodowska
and
A.
Parczewski
, “
Organic solvents in the pharmaceutical industry
,”
Acta Pol Pharm.
67
(
1
),
3
12
(
2010
); available at https://pubmed.ncbi.nlm.nih.gov/20210074/.
5.
D. R.
Joshi
and
N.
Adhikari
, “
An overview on common organic solvents and their toxicity
,”
J. Pharm. Res. Int.
28
(
3
),
1
(
2019
).
6.
C.
Jimenez-Gonzalez
,
A. D.
Curzons
,
D. J.
Constable
, and
V. L.
Cunningham
, “
Expanding GSK's solvent selection guide—Application of life cycle assessment to enhance solvent selections
,”
Clean Technol. Environ. Policy
7
(
1
),
42
50
(
2004
).
7.
A. M.
Sukhadia
,
A.
Datta
, and
D. G.
Baird
, “
Generation of continuous liquid-crystalline polymer reinforcements in thermoplastics by a novel blending process
,” in
Search Excellence
(
Society of Plastics Engineers, Inc.
,
1991
), pp.
1008
1013
(in English).
8.
D. G.
Baird
,
M. Q.
Ansari
, and
C. D.
Mansfield
, “
Thermoplastic composites for use in fused filament fabrication, a 3D printing process
,” U.S. patent application 2021/0095115 (
2021
).
9.
T.
Chen
,
J. Y.
Han
,
D. A.
Okonski
,
D.
Kazerooni
,
L.
Ju
, and
D. G.
Baird
, “
Thermotropic liquid crystalline polymer reinforced polyamide composite for fused filament fabrication
,”
Addit. Manuf.
40
,
101931
(
2021
).
10.
B. L.
Dickinson
, “
UDEL® polysulfone for medical applications
,”
J. Biomater. Appl.
3
(
4
),
605
634
(
1988
).
11.
See https://content.solvay.com/sulfones-processing-guide for “
Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® Modified PPSU Processing Guide
12.
J.
Dealy
and
D.
Plazek
, “
Time-temperature superposition—A users guide
,”
Rheol. Bull.
78
,
16
31
(
2009
).
13.
M. M.
Fares
,
J.
Hacaloglu
, and
S.
Suzer
, “
Characterization of degradation products of polyethylene oxide by pyrolysis mass spectrometry
,”
Eur. Polym. J.
30
(
7
),
845
850
(
1994
).
14.
K.
Pielichowski
and
K.
Flejtuch
, “
Non-oxidative thermal degradation of poly(ethylene oxide): Kinetic and thermoanalytical study
,”
J. Anal. Appl. Pyrolysis
73
(
1
),
131
138
(
2005
).
15.
J. A.
Faucher
,
J. V.
Koleske
,
E. R.
Santee
,
J. J.
Stratta
, and
C. W.
Wilson
, “
Glass transitions of ethylene oxide polymers
,”
J. Appl. Phys.
37
(
11
),
3962
3964
(
1966
).
16.
A.
Körner
,
A.
Larsson
,
L.
Piculell
, and
B.
Wittgren
, “
Molecular information on the dissolution of polydisperse polymers: Mixtures of long and short poly(ethylene oxide)
,”
J. Phys. Chem. B
109
(
23
),
11530
11537
(
2005
).
17.
R.
Salovey
and
F. R.
Dammont
, “
Irradiation of polyethylene oxide and polypropylene
,”
J. Polym. Sci. Part A: Gen. Pap.
1
(
6
),
2155
2162
(
1963
).
18.
S.
Beret
and
J.
Prausnitz
, “
A generalized van der Waals equation for polymers and other fluids
,”
Macromolecules
8
(
6
),
878
882
(
1975
).
19.
G.
Helleloid
, “
On the computation of viscosity-shear rate temperature master curves for polymeric liquids
,”
Morehead Electronic J. Applicable Mathematics Archives
. 2001 11; available at https://scholarworks.moreheadstate.edu/mejam_archives/11/.
20.
A.
Teramoto
and
H.
Fujita
, “
Temperature and molecular weight dependence of the melt viscosity of polyethylene oxide in bulk
,”
Die Makromol. Chem.
85
(
1
),
261
272
(
1965
).
21.
N. S.
Vrandečić
,
M.
Erceg
,
M.
Jakić
, and
I.
Klarić
, “
Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight
,”
Thermochim. Acta
498
(
1
),
71
80
(
2010
).

Supplementary Material

You do not currently have access to this content.