General rigid bead-rod theory is actively used for connecting the complex viscosity of polymeric liquids to the structure of macromolecules. Using general rigid bead-rod theory, the rheological properties of polymeric liquids have been investigated theoretically and applied practically. In this paper, we include the hydrodynamic interaction of the nearest neighboring beads into general rigid bead-rod theory. By applying our new method, structure by structure, to backbone branched macromolecular configurations, we investigate the interplay of hydrodynamic interaction with the number of branches, branch length, and branch positions. We learn that the effect of hydrodynamic interaction is greater in branched macromolecules than in unbranched. In the future, this method will play an important role in the study of the rheological properties of polymeric liquids, wherever hydrodynamic interaction matters.

1.
S. J.
Coombs
,
M. A.
Kanso
,
K. E.
Haddad
, and
A. J.
Giacomin
, “
Complex viscosity of star-branched macromolecules from analytical general rigid bead-rod theory
,”
Phys. Fluids
33
,
093111
(
2021
).
2.
K. E.
Haddad
,
C.
Aumnate
,
C.
Saengow
,
M. A.
Kanso
,
S. J.
Coombs
, and
A. J.
Giacomin
, “
Complex viscosity of graphene suspensions
,”
Phys. Fluids
33
,
093109
(
2021
).
3.
M. A.
Kanso
,
A. J.
Giacomin
,
C.
Saengow
, and
J. H.
Piette
, “
Macromolecular architecture and complex viscosity
,”
Phys. Fluids
31
,
087107
(
2019
). Editor's pick. Errata: Eq. (21) should be “ a 2 ν 2 + 2 3 ( 6 b 9 ) a ν + 1 9 ( 36 b 2 123 b + 81 ) = 0”; In Table XIV, n 0 n s should be η 0 η s. In Table XV, ψ 1 , 0 should be Ψ 1 , 0, and nKT should be nkT. In Table IV, macromolecule 21 entry should be 1 2 L , 3 2 L , 0; L , 0 , 0; 0 , 0 , 0; 1 2 L , 3 2 L , 0 and macromolecule 17 entry should be multiplied by L. In Eq. (44), η should be 2 η .
4.
R. B.
Bird
and
W. J.
Drugan
, “
An exploration and further study of an enhanced Oldroyd model
,”
Phys. Fluids
29
,
053103
(
2017
).
5.
M. A.
Kanso
, “
Polymeric liquid behavior in oscillatory shear flow
,” M.S. thesis (
Queen's University
,
Kingston
,
Canada
,
2019
).
6.
A. J.
Giacomin
and
M. A.
Kanso
, “
General rigid bead-rod macromolecular theory
,” in
Recent Advances in Rheology: Theory and Biorheology
, edited by
D.
De Kee
and
R.
Arun
(
AIP Publishing
,
Melville
,
NY
,
2022
), p.
26
.
7.
O.
Hassager
, “
Kinetic theory and rheology of bead-rod models for macromolecular solutions. II. linear unsteady flow properties
,”
J. Chem. Phys.
60
,
4001
4008
(
1974
).
8.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
John Wiley and Sons
,
New York
,
1987
), Vol.
2
; Errata: On p. 409 of the first printing, the ( n + m ) ! in the denominator should be ( n + m ) !; In Table 16.4–1, under L entry “length of rod” should be “bead center to center length of a rigid dumbbell”; In the Fig. 14.1–2 caption, “Multibead rods of length L” should be “Multibead rods of length L+d.
9.
M. A.
Kanso
,
A. J.
Giacomin
, and
C.
Saengow
, “
Large-amplitude oscillatory shear flow loops for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
,
053102
(
2020
).
10.
R. B.
Bird
,
A. J.
Giacomin
,
A. M.
Schmalzer
, and
C.
Aumnate
, “
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
,”
J. Chem. Phys.
140
,
074904
(
2014
).
11.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C. F.
Curtiss
,
Dynamics of Polymeric Liquids
, Vol.
2
, 1st ed.,
John Wiley and Sons, Inc
.,
New York
(
1977
). Errata: In Problem 11.C.1 d., “and φ2” should be “through φ4”; in Eq. 13.6–17, “ R v 1” should be “ R v 2.”
12.
M. A.
Kanso
,
J. H.
Piette
,
J. A.
Hanna
, and
A. J.
Giacomin
, “
Coronavirus rotational diffusivity
,”
Phys. Fluids
32
,
113101
(
2020
).
13.
M. A.
Kanso
,
V.
Chaurasia
,
E.
Fried
, and
A. J.
Giacomin
, “
Peplomer bulb shape and coronavirus rotational diffusivity
,”
Phys. Fluids
33
,
033115
(
2021
).
14.
J. H.
Piette
,
L. M.
Jbara
,
C.
Saengow
, and
A. J.
Giacomin
, “
Exact coefficients for rigid dumbbell suspensions for steady shear flow material function expansions
,”
Phys. Fluids
31
,
021212
(
2019
).
15.
J. H.
Piette
,
C.
Saengow
, and
A. J.
Giacomin
, “
Hydrodynamic interaction for rigid dumbbell suspensions in steady shear flow
,”
Phys. Fluids
31
,
053103
(
2019
).
16.
W. E.
Stewart
and
J. P.
Sørensen
, “
Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow
,”
Trans. Soc. Rheol.
16
,
1
13
(
1972
).
17.
M.
van Gurp
and
J.
Palmen
, “
Time-temperature superposition for polymeric blends
,”
Rheol. Bull.
67
,
5
8
(
1998
), available at https://www.rheology.org/sor/Publications/RheoBulletin/RB1998Jan.pdf.
18.
S. G.
Hatzikiriakos
, “
Long chain branching and polydispersity effects on the rheological properties of polyethylenes
,”
Polym. Eng. Sci.
40
,
2279
2287
(
2000
).
19.
C. A.
Garcia-Franco
,
D. J.
Lohse
,
C. G.
Robertson
, and
O.
Georjon
, “
Relative quantification of long chain branching in essentially linear polyethylenes
,”
Eur. Polym. J.
44
,
376
391
(
2008
).
20.
M. A.
Derakhshandeh
,
M.
Ansari
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Microstructure characterization of polyethylene using thermo-rheological methods
,”
Polym. Test.
60
,
68
77
(
2017
).
21.
M. A.
Kanso
and
A. J.
Giacomin
, “
van Gurp-Palmen relations for longchain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
,
033101
(
2020
).
22.
J. M.
Dealy
and
R. G.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
(
Hanser
,
Munich
,
2005
).
23.
S.
Trinkle
,
P.
Walter
, and
C.
Friedrich
, “
van Gurp-Palmen plot II. Classification of long chain branched polymers by their topology
,”
Rheol. Acta
41
,
103
113
(
2002
).
24.
S. J.
Coombs
,
M. A.
Kanso
, and
A. J.
Giacomin
, “
Cole-cole relation for long-chain branching from general rigid bead-rod theory
,”
Phys. Fluids
32
(
9
),
093106
(
2020
).
25.
S. J.
Coombs
, “
Macromolecular branching from general rigid bead-rod theory
,” M.S. thesis (
Queen's University
,
Kingston
,
Canada
,
2021
).
26.
M.
Hu
,
Y.
Xia
,
G. B.
McKenna
,
J. A.
Kornfield
, and
R. H.
Grubbs
, “
Linear rheological response of a series of densely branched brush polymers
,”
Macromolecules
44
,
6935
6943
(
2011
).
27.
J. M.
Dealy
and
J.
Wang
,
Melt Rheology and Its Applications in the Plastics Industry
, 2nd ed. (
Springer
,
Dordrecht
,
2013
).
28.
J. H.
Piette
,
A. J.
Giacomin
, and
M. A.
Kanso
, “
Complex viscosity of helical and doubly helical polymeric liquids from general rigid bead-rod theory
,”
Phys. Fluids
31
,
111904
(
2019
).
29.
J. H.
Piette
,
N.
Moreno
,
E.
Fried
, and
A. J.
Giacomin
, “
The complex viscosity of Möbius macromolecules
,”
Phys. Fluids
32
,
093107
(
2020
).
You do not currently have access to this content.