Thermal-viscous fingering instability in porous media is a common phenomenon in nature as well as in many scientific problems and industrial applications. Despite the importance, however, thermal transport in flow of a non-Newtonian fluid in porous media and the resulting fingering has not been studied extensively, especially if the pore space is heterogeneous. In this paper, we propose a pore network model with full graphics processing unit-parallelized acceleration to simulate thermal transport in flow through three-dimensional unstructured pore networks at centimeter scale, containing millions of pores. A thermal Meter equation is proposed to model temperature- and shear stress-dependent rheology of the non-Newtonian fluids. After comparing the simulation results with an analytical solution for the location of the thermal front in a spatially uncorrelated pore network, thermal transport in flow of both Newtonian and non-Newtonian fluids is studied in the spatially uncorrelated and correlated pore networks over a range of injection flow rates. The simulations indicate that the injection flow rate, the shear-thinning rheology, and the morphological heterogeneity of the pore space all enhance thermal-viscous fingering instability in porous media, but with distinct patterns. In spatially correlated networks, the average temperature and apparent viscosity at the breakthrough point in flow of a shear-thinning fluid exhibit non-monotonic dependence on the injection flow rate. An analysis of the fractal dimension of thermal patterns at the breakthrough point supports the conclusion. The results highlight the importance of designing optimal flow conditions for application purposes.

1.
B.
Marsh
and
L.
Kantha
, “
On the heat and mass transfer from an ascending magma
,”
Earth Planet. Sci. Lett.
39
,
435
443
(
1978
).
2.
A. K.
Schindler
and
K. J.
Folliard
, “
Influence of supplementary cementing materials on the heat of hydration of concrete
,” in
Proceedings of Advances in Cement and Concrete IX Conference, Copper Mountain Conference Resort in Colorado
(
2003
).
3.
R. M.
Butler
,
Thermal Recovery of Oil and Bitumen
(
Prentice Hall, Inc
.,
Old Tappan, NJ, USA
,
1991
).
4.
A. M.
Papadopoulos
, “
State of the art in thermal insulation materials and aims for future developments
,”
Energy Build.
37
,
77
86
(
2005
).
5.
A. I.
Tok
,
F. Y.
Boey
, and
Y.
Lam
, “
Non-Newtonian fluid flow model for ceramic tape casting
,”
Mater. Sci. Eng., A
280
,
282
288
(
2000
).
6.
M.
Shirato
,
T.
Aragaki
, and
E.
Iritani
, “
Analysis of constant pressure filtration of power-law non-Newtonian fluids
,”
J. Chem. Eng. Jpn.
13
,
61
66
(
1980
).
7.
B.
Straubhaar
,
J.
Pauchet
, and
M.
Prat
, “
Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cells
,”
Int. J. Heat Mass Transfer
102
,
891
901
(
2016
).
8.
D.
Or
,
P.
Lehmann
,
E.
Shahraeeni
, and
N.
Shokri
, “
Advances in soil evaporation physics–A review
,”
Vadose Zone J.
12
,
1
16
(
2013
).
9.
J.
Cobeña-Reyes
and
M.
Sahimi
, “
Rheology of water in small nanotubes
,”
Phys. Rev. E
102
,
023106
(
2020
).
10.
I.
Ataei-Dadavi
,
N.
Rounaghi
,
M.
Chakkingal
,
S.
Kenjeres
,
C. R.
Kleijn
, and
M. J.
Tummers
, “
An experimental study of flow and heat transfer in a differentially side heated cavity filled with coarse porous media
,”
Int. J. Heat Mass Transfer
143
,
118591
(
2019
).
11.
J.
Beck
and
A.
Beck
, “
Computing thermal conductivities of rocks from chips and conventional specimens
,”
J. Geophys. Res.
70
,
5227
5239
, (
1965
).
12.
F.
Tong
,
L.
Jing
, and
R. W.
Zimmerman
, “
An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow
,”
Int. J. Rock Mech. Min. Sci.
46
,
1358
1369
(
2009
).
13.
S.
Torquato
and
H.
Haslach
, Jr.
, “
Random heterogeneous materials: Microstructure and macroscopic properties
,”
Appl. Mech. Rev.
55
,
B62
B63
(
2002
).
14.
K.
Vafai
and
S. J.
Kim
, “
Forced convection in a channel filled with a porous medium: An exact solution
,”
J. Heat Transfer
111
,
1103
1106
(
1989
).
15.
W.
Lu
,
C.
Zhao
, and
S.
Tassou
, “
Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes
,”
Int. J. Heat Mass Transfer
49
,
2751
2761
(
2006
).
16.
H.
Xu
,
C.
Zhao
, and
K.
Vafai
, “
Analytical study of flow and heat transfer in an annular porous medium subject to asymmetrical heat fluxes
,”
Heat Mass Transfer
53
,
2663
2676
(
2017
).
17.
K.
Vafai
and
C. L.
Tien
, “
Boundary and inertia effects on flow and heat transfer in porous media
,”
Int. J. Heat Mass Transfer
24
,
195
203
(
1981
).
18.
Z.
Guo
and
T.
Zhao
, “
A lattice Boltzmann model for convection heat transfer in porous media
,”
Numer. Heat Transfer, Part B
47
,
157
177
(
2005
).
19.
D.
Gao
,
Z.
Chen
, and
L.
Chen
, “
A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions
,”
Int. J. Heat Mass Transfer
70
,
979
989
(
2014
).
20.
B.
Markicevic
,
A.
Bazylak
, and
N.
Djilali
, “
Determination of transport parameters for multiphase flow in porous gas diffusion electrodes using a capillary network model
,”
J. Power Sources
171
,
706
717
(
2007
).
21.
E. F.
Médici
and
J. S.
Allen
, “
Evaporation, two phase flow, and thermal transport in porous media with application to low-temperature fuel cells
,”
Int. J. Heat Mass Transfer
65
,
779
788
(
2013
).
22.
K. H.
Le
,
A.
Kharaghani
,
C.
Kirsch
, and
E.
Tsotsas
, “
Pore network simulations of heat and mass transfer inside an unsaturated capillary porous wick in the dry-out regime
,”
Transp. Porous Media
114
,
623
648
(
2016
).
23.
V.
Surasani
,
T.
Metzger
, and
E.
Tsotsas
, “
A non-isothermal pore network drying model with gravity effect
,”
Transp. Porous Media
80
,
431
439
(
2009
).
24.
V.
Surasani
,
T.
Metzger
, and
E.
Tsotsas
, “
Drying simulations of various 3D pore structures by a nonisothermal pore network model
,”
Drying Technol.
28
,
615
623
(
2010
).
25.
N.
Belgacem
,
M.
Prat
, and
J.
Pauchet
, “
Coupled continuum and condensation–evaporation pore network model of the cathode in polymer-electrolyte fuel cell
,”
Int. J. Hydrogen Energy
42
,
8150
8165
(
2017
).
26.
T.
Koch
,
K.
Weishaupt
,
J.
Müller
,
B.
Weigand
, and
R.
Helmig
, “
A (dual) network model for heat transfer in porous media
,”
Transp. Porous Media
140
,
107
135
(
2021
).
27.
S.
An
,
S.
Hasan
,
H.
Erfani
,
M.
Babaei
, and
V.
Niasar
, “
Unravelling effects of the pore-size correlation length on the two-phase flow and solute transport properties: GPU-based pore-network modelling
,”
Water Resour. Res.
56
,
e2020WR027403
, (
2020
).
28.
A.
Metzner
and
R.
Otto
, “
Agitation of non-Newtonian fluids
,”
AIChE J.
3
,
3
10
(
1957
).
29.
R.
Rebhi
,
M.
Mamou
, and
N.
Hadidi
, “
Bistability bifurcation phenomenon induced by non-Newtonian fluids rheology and thermosolutal convection in Rayleigh–Bénard convection
,”
Phys. Fluids
33
,
073104
(
2021
).
30.
M. M.
Cross
, “
Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems
,”
J. Colloid Sci.
20
,
417
437
(
1965
).
31.
K.
Yasuda
, “
Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
1979
).
32.
D. M.
Meter
and
R. B.
Bird
, “
Tube flow of non-Newtonian polymer solutions: Part I. Laminar flow and rheological models
,”
AIChE J.
10
,
878
881
(
1964
).
33.
K.
Sorbie
,
P.
Clifford
, and
E.
Jones
, “
The rheology of pseudoplastic fluids in porous media using network modeling
,”
J. Colloid Interface Sci.
130
,
508
534
(
1989
).
34.
J.
Pearson
and
P.
Tardy
, “
Models for flow of non-Newtonian and complex fluids through porous media
,”
J. Non-Newtonian Fluid Mech.
102
,
447
473
(
2002
).
35.
C. L.
Perrin
,
P. M.
Tardy
,
K. S.
Sorbie
, and
J. C.
Crawshaw
, “
Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels
,”
J. Colloid Interface Sci.
295
,
542
550
(
2006
).
36.
X.
Lopez
,
P. H.
Valvatne
, and
M. J.
Blunt
, “
Predictive network modeling of single-phase non-Newtonian flow in porous media
,”
J. Colloid Interface Sci.
264
,
256
265
(
2003
).
37.
T.
Sochi
, “
Non-Newtonian flow in porous media
,”
Polymer
51
,
5007
5023
(
2010
).
38.
M.
Balhoff
,
D.
Sanchez-Rivera
,
A.
Kwok
,
Y.
Mehmani
, and
M.
Prodanović
, “
Numerical algorithms for network modeling of yield stress and other non-Newtonian fluids in porous media
,”
Transp. Porous Media
93
,
363
379
(
2012
).
39.
S.
Aghabozorgi
and
B.
Rostami
, “
An investigation of polymer adsorption in porous media using pore network modelling
,”
Transp. Porous Media
115
,
169
187
(
2016
).
40.
F.
Xiong
,
W.
Sun
,
J.
Ba
, and
J. M.
Carcione
, “
Effects of fluid rheology and pore connectivity on rock permeability based on a network model
,”
J. Geophys. Res.: Solid Earth
125
,
e2019JB018857
, (
2020
).
41.
P. G.
Saffman
and
G. I.
Taylor
, “
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
,”
Proc. R. Soc. A
245
,
312
329
(
1958
).
42.
G. M.
Homsy
, “
Viscous fingering in porous media
,”
Annu. Rev. Fluid Mech.
19
,
271
311
(
1987
).
43.
X.
Kong
,
M.
Haghighi
, and
Y.
Yortsos
, “
Visualization of steam displacement of heavy oils in a Hele-Shaw cell
,”
Fuel
71
,
1465
1471
(
1992
).
44.
K.
Sasaki
,
A.
Satoshi
,
N.
Yazawa
,
F.
Kaneko
 et al, “
Microscopic visualization with high resolution optical-fiber scope at steam chamber interface on initial stage of SAGD process
,” in Proceedings of
SPE/DOE Improved Oil Recovery Symposium
(
Society of Petroleum Engineers
,
2002
), Paper No. SPE-75241-MS.
45.
T. W.
de Haas
,
H.
Fadaei
,
U.
Guerrero
, and
D.
Sinton
, “
Steam-on-a-chip for oil recovery: The role of alkaline additives in steam assisted gravity drainage
,”
Lab Chip
13
,
3832
3839
(
2013
).
46.
A. H.
Syed
,
N.
Mosavat
,
J.
Riordon
,
P.
Lele
,
Z.
Qi
,
M.
Kim
,
H.
Fadaei
,
A.
Guerrero
, and
D.
Sinton
, “
A combined method for pore-scale optical and thermal characterization of SAGD
,”
J. Pet. Sci. Eng.
146
,
866
873
(
2016
).
47.
J.
Cui
and
T.
Babadagli
, “
Retrieval of solvent injected during heavy-oil recovery: Pore scale micromodel experiments at variable temperature conditions
,”
Int. J. Heat Mass Transfer
112
,
837
849
(
2017
).
48.
Y.
Wang
,
H.
Liu
,
Q.
Zhang
,
Z.
Chen
,
J.
Wang
,
X.
Dong
, and
F.
Chen
, “
Pore-scale experimental study on EOR mechanisms of combining thermal and chemical flooding in heavy oil reservoirs
,”
J. Pet. Sci. Eng.
185
,
106649
(
2020
).
49.
J.
Kuang
,
T.
Maxworthy
, and
P.
Petitjeans
, “
Miscible displacements between silicone oils in capillary tubes
,”
Eur. J. Mech.-B/Fluids
22
,
271
277
(
2003
).
50.
K. E.
Holloway
and
J. R.
De Bruyn
, “
Viscous fingering with a single fluid
,”
Can. J. Phys.
83
,
551
564
(
2005
).
51.
Y.
Nagatsu
,
N.
Fujita
,
Y.
Kato
, and
Y.
Tada
, “
An experimental study of non-isothermal miscible displacements in a Hele-Shaw cell
,”
Exp. Therm. Fluid Sci.
33
,
695
705
(
2009
).
52.
M.
Islam
and
J.
Azaiez
, “
Miscible thermo-viscous fingering instability in porous media. Part 1: Linear stability analysis
,”
Transp. Porous Media
84
,
821
844
(
2010
).
53.
M.
Norouzi
,
S.
Dorrani
,
H.
Shokri
, and
O. A.
Bég
, “
Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media
,”
Int. J. Heat Mass Transfer
129
,
212
223
(
2019
).
54.
M.
Shabouei
and
K.
Nakshatrala
, “
On numerical stabilization in modeling double-diffusive viscous fingering
,”
Transp. Porous Media
132
,
39
52
(
2020
).
55.
D.
Kinniment
and
E.
Chester
, “
Design of an on-chip random number generator using metastability
,” in
Proceedings of the 28th European Solid-State Circuits Conference
(
IEEE
,
2002
), pp.
595
598
.
56.
V.
Joekar-Niasar
and
S.
Hassanizadeh
, “
Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review
,”
Crit. Rev. Environ. Sci. Technol.
42
,
1895
1976
(
2012
).
57.
A. K.
Coker
,
Ludwig's Applied Process Design for Chemical and Petrochemical Plants
, 4th ed. (
Gulf Professional Publishing
,
2007
), pp.
103
132
.
58.
F. P.
Incropera
,
A. S.
Lavine
,
T. L.
Bergman
, and
D. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
2007
).
59.
J. L.
Vázquez
,
The Porous Medium Equation: Mathematical Theory
(
Oxford University Press on Demand
,
2007
).
60.
E.
Tsotsas
and
H.
Martin
, “
Thermal conductivity of packed beds: A review
,”
Chem. Eng. Process.
22
,
19
37
(
1987
).
61.
C.
Wang
and
P. J.
Fox
, “
Analytical solutions for heat transfer in saturated soil with effective porosity
,”
J. Geotech. Geoenviron. Eng.
146
,
04020095
(
2020
).
62.
D.
Koňáková
,
E.
Vejmelková
, and
R.
Černỳ
, “
Thermal properties of selected sandstones
,” in
Advances in Modern Mechanical Engineering: Proceedings of the 4th International Conference on Fluid Mechanics and Heat & Mass Transfer (FLUIDSHEAT-13), Dubrovnik, Croatia
, 25–27 June 2013 (Advances in Modern Mechanical Engineering,
2013
), pp.
100
104
.
63.
T.
Shende
,
V. J.
Niasar
, and
M.
Babaei
, “
Effective viscosity and Reynolds number of non-Newtonian fluids using meter model
,”
Rheol. Acta
60
,
11
21
(
2021
).
64.
T.
Shende
,
V.
Niasar
, and
M.
Babaei
, “
Upscaling non-Newtonian rheological fluid properties from pore-scale to Darcy's scale
,”
Chem. Eng. Sci.
239
,
116638
(
2021
).
65.
N.
Marx
,
L.
Fernández
,
F.
Barceló
, and
H.
Spikes
, “
Shear thinning and hydrodynamic friction of viscosity modifier-containing oils. Part I: Shear thinning behaviour
,”
Tribol. Lett.
66
,
92
(
2018
).
66.
S.
Kasap
and
P.
Capper
,
Springer Handbook of Electronic and Photonic Materials
(
Springer
,
2017
), Chap. 19.
67.
H.
Weber
, “
Investigations into the thermal conductivity of liquids
,”
Wiedemanns Ann. Phys. Chim.
10
,
103
(
1880
).
68.
S.
An
,
H. W.
Yu
, and
J.
Yao
, “
GPU-accelerated volumetric lattice Boltzmann method for porous media flow
,”
J. Pet. Sci. Eng.
156
,
546
552
(
2017
).
69.
S.
An
,
H. W.
Yu
,
Z.
Wang
,
B.
Kapadia
, and
J.
Yao
, “
Unified mesoscopic modeling and GPU-accelerated computational method for image-based pore-scale porous media flows
,”
Int. J. Heat Mass Transfer
115
,
1192
1202
(
2017
).
70.
K.
Foroutan-pour
,
P.
Dutilleul
, and
D. L.
Smith
, “
Advances in the implementation of the box-counting method of fractal dimension estimation
,”
Appl. Math. Comput.
105
,
195
210
(
1999
).
71.
M.
Sahimi
,
Heterogeneous Materials I: Linear Transport and Optical Properties
(
Springer Science & Business Media
,
2003
), Vol.
22
.
72.
U.
Eberhard
,
H. J.
Seybold
,
M.
Floriancic
,
P.
Bertsch
,
J.
Jiménez-Martínez
,
J. S.
Andrade
, Jr.
, and
M.
Holzner
, “
Determination of the effective viscosity of non-Newtonian fluids flowing through porous media
,”
Front. Phys.
7
,
71
(
2019
).
You do not currently have access to this content.