Fluid transport involving brine–oil interfaces plays an important role in applications including enhanced oil recovery and oil–brine separation and can be affected markedly by the slippage at these interfaces. The slippage at brine–oil interfaces, however, is not well understood, especially in the presence of surfactants, which are ubiquitous in natural and engineering systems. Here, we report molecular dynamics studies of the slippage at brine–decane interfaces in the presence of two surfactants, nonylphenol and phenol. They share essentially the same head but nonylphenol has a nine-carbon alkyl tail and phenol has no clear tail. At zero surfactant density, a slip length of 1.2 nm exists at the brine–decane interface. As either surfactant is introduced to brine–decane interfaces, the slip length initially decreases linearly, with nonylphenol being more effective in reducing the slip length. As more surfactants are introduced, the decrease in slip length slows down and eventually, the slip length plateaus at −1.4 and −0.5 nm for interfaces populated with nonylphenol and phenol, respectively. The mechanisms of the observed slip length vs surfactant density relations and the effects of tail length on the interfacial slippage are elucidated by analyzing the molecular structure and transport of interfacial fluids and surfactants.

1.
J.
Koplik
and
J. R.
Banavar
, “
Slip, immiscibility, and boundary conditions at the liquid-liquid interface
,”
Phys. Rev. Lett.
96
,
044505
(
2006
).
2.
H.
Zeng
,
Y.
Tian
,
B.
Zhao
,
M.
Tirrell
, and
J.
Israelachvili
, “
Friction at the liquid/liquid interface of two immiscible polymer films
,”
Langmuir
25
,
4954
4964
(
2009
).
3.
N.
Kavokine
,
R. R.
Netz
, and
L.
Bocquet
, “
Fluids at the nanoscale: From continuum to subcontinuum transport
,”
Annu. Rev. Fluid Mech.
53
,
377
410
(
2021
).
4.
C.
Cottin-Bizonne
,
J.
Barrat
,
L.
Bocquet
, and
E.
Charlaix
, “
Low-friction flows of liquid at nanopatterned interfaces
,”
Nat. Mater.
2
,
237
240
(
2003
).
5.
S.
Zhan
,
Y.
Su
,
Z.
Jin
,
W.
Wang
, and
L.
Li
, “
Effect of water film on oil flow in quartz nanopores from molecular perspectives
,”
Fuel
262
,
116560
(
2020
).
6.
A.
Schlaich
,
J.
Kappler
, and
R. R.
Netz
, “
Hydration friction in nanoconfinement: From bulk via interfacial to dry friction
,”
Nano Lett.
17
,
5969
5976
(
2017
).
7.
T.
Qian
,
X.-P.
Wang
, and
P.
Sheng
, “
A variational approach to moving contact line hydrodynamics
,”
J. Fluid Mech.
564
,
333
360
(
2006
).
8.
P. C.
Myint
and
A.
Firoozabadi
, “
Thin liquid films in improved oil recovery from low-salinity brine
,”
Curr. Opin. Colloid Interface Sci.
20
,
105
114
(
2015
).
9.
C.
Fang
,
S.
Sun
, and
R.
Qiao
, “
Structure, thermodynamics, and dynamics of thin brine films in oil–brine–rock systems
,”
Langmuir
35
,
10341
10353
(
2019
).
10.
Z. M.
Wilmott
,
C. J. W.
Breward
, and
S. J.
Chapman
, “
The effect of ions on the motion of an oil slug through a charged capillary
,”
J. Fluid Mech.
841
,
310
350
(
2018
).
11.
S.
Jiménez Bolaños
and
B.
Vernescu
, “
Derivation of the Navier slip and slip length for viscous flows over a rough boundary
,”
Phys. Fluids
29
,
057103
(
2017
).
12.
M.
Shaat
, “
Hybrid continuum-molecular modeling of fluid slip flow
,”
Phys. Fluids
32
,
122009
(
2020
).
13.
G.
Galliero
, “
Lennard-Jones fluid-fluid interfaces under shear
,”
Phys. Rev. E
81
,
056306
(
2010
).
14.
S.
Razavi
,
J.
Koplik
, and
I.
Kretzschmar
, “
Molecular dynamics simulations: Insight into molecular phenomena at interfaces
,”
Langmuir
30
,
11272
11283
(
2014
).
15.
P.
Poesio
,
A.
Damone
, and
O. K.
Matar
, “
Slip at liquid-liquid interfaces
,”
Phys. Rev. Fluids
2
,
044004
(
2017
).
16.
Y.
Hu
,
X.
Zhang
, and
W.
Wang
, “
Boundary conditions at the liquid- liquid interface in the presence of surfactants
,”
Langmuir
26
,
10693
10702
(
2010
).
17.
W. A.
MacCrehan
and
J. M.
Brown-Thomas
, “
Determination of phenols in petroleum crude oils using liquid chromatography with electrochemical detection
,”
Anal. Chem.
59
,
477
479
(
1987
).
18.
O.
Kroutil
,
Z.
Chval
,
A.
Skelton
, and
M.
Predota
, “
Computer simulations of quartz (101)–water interface over a range of pH values
,”
J. Phys. Chem. C
119
,
9274
9286
(
2015
).
19.
R. T.
Cygan
,
J.-J.
Liang
, and
A. G.
Kalinichev
, “
Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field
,”
J. Phys. Chem. B
108
,
1255
1266
(
2004
).
20.
I. S.
Joung
and
T. E.
Cheatham
III, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
21.
A. K.
Malde
,
L.
Zuo
,
M.
Breeze
,
M.
Stroet
,
D.
Poger
,
P. C.
Nair
,
C.
Oostenbrink
, and
A. E.
Mark
, “
An automated force field topology builder (ATB) and repository: Version 1.0
,”
J. Chem. Theory Comput.
7
,
4026
4037
(
2011
).
22.
M.
Stroet
,
B.
Caron
,
K. M.
Visscher
,
D. P.
Geerke
,
A. K.
Malde
, and
A. E.
Mark
, “
Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane
,”
J. Chem. Theory Comput.
14
,
5834
5845
(
2018
).
23.
N.
Choudhary
,
M. F.
Anwari Che Ruslan
,
A. K.
Narayanan Nair
,
R.
Qiao
, and
S.
Sun
, “
Bulk and interfacial properties of the decane + brine system in the presence of carbon dioxide, methane, and their mixture
,”
Ind. Eng. Chem. Res.
60
,
11525
11534
(
2021
).
24.
N.
Choudhary
,
A. K. N.
Nair
,
M. F. A. C.
Ruslan
, and
S.
Sun
, “
Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture
,”
Sci. Rep.
9
(
1
),
19784
(
2019
).
25.
W.
Li
,
Y.
Nan
,
X.
Wen
,
W.
Wang
, and
Z.
Jin
, “
Effects of salinity and N-, S-, and O-bearing polar components on light oil–brine interfacial properties from molecular perspectives
,”
J. Phys. Chem. C
123
,
23520
23528
(
2019
).
26.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
27.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
28.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
,”
J. Comput. Chem.
13
,
952
962
(
1992
).
29.
B.
Hess
,
H.
Bekker
,
H. J.
Berendsen
, and
J. G.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
30.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
31.
I.-C.
Yeh
and
M. L.
Berkowitz
, “
Ewald summation for systems with slab geometry
,”
J. Chem. Phys.
111
,
3155
3162
(
1999
).
32.
A. L.
Lee
and
R. T.
Ellington
, “
Viscosity of n-decane in the liquid phase
,”
J. Chem. Eng. Data
10
,
346
348
(
1965
).
33.
J. P.
Ewen
,
C.
Gattinoni
,
F. M.
Thakkar
,
N.
Morgan
,
H. A.
Spikes
, and
D.
Dini
, “
A comparison of classical force-fields for molecular dynamics simulations of lubricants
,”
Materials
9
,
651
(
2016
).
34.
M.
Moret
and
G.
Zebende
, “
Amino acid hydrophobicity and accessible surface area
,”
Phys. Rev. E
75
,
011920
(
2007
).
35.
E.
Durham
,
B.
Dorr
,
N.
Woetzel
,
R.
Staritzbichler
, and
J.
Meiler
, “
Solvent accessible surface area approximations for rapid and accurate protein structure prediction
,”
J. Mol. Model.
15
,
1093
1108
(
2009
).
36.
H.
Chen
and
A. Z.
Panagiotopoulos
, “
Molecular modeling of surfactant micellization using solvent-accessible surface area
,”
Langmuir
35
,
2443
2450
(
2019
).
37.
C.
Fan
,
J.
Jia
,
B.
Peng
,
Y.
Liang
,
J.
Li
, and
S.
Liu
, “
Molecular dynamics study on CO2 foam films with sodium dodecyl sulfate: Effects of surfactant concentration, temperature, and pressure on the interfacial tension
,”
Energy Fuels
34
,
8562
8574
(
2020
).
38.
F.
Eisenhaber
,
P.
Lijnzaad
,
P.
Argos
,
C.
Sander
, and
M.
Scharf
, “
The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies
,”
J. Comput. Chem.
16
,
273
284
(
1995
).

Supplementary Material

You do not currently have access to this content.