A three-dimensional (3D) non-hydrostatic model is presented for the simulation of dam-break flows. The model solves the Reynolds-averaged Navier–Stokes equations using the projection method. 3D computational grids are constructed from a two-dimensional horizontal unstructured mesh by adding horizontal layers in the vertical direction. Based on the horizontal unstructured grid system, horizontal advection terms are discretized by a momentum conservative scheme. The proposed model is validated with several physical experiments. The agreement between the model results and experimental data is generally good, which demonstrates the capability of the proposed model to resolve dam-break flows over flat and uneven bottoms with complex geometries. Moreover, the efficiency of the model is evaluated with 3D dam-break flow experiments. Comparisons between the non-hydrostatic model and the corresponding quasi-3D shallow water model are also performed, which confirm the role of non-hydrostatic effects in dam-break flows.

1.
Ai
,
C.
and
Ding
,
W.
, “
A 3D unstructured non-hydrostatic ocean model for internal waves
,”
Ocean Dyn.
66
,
1253
1270
(
2016
).
2.
Ai
,
C.
and
Jin
,
S.
, “
Non-hydrostatic finite volume model for non-linear waves interacting with structures
,”
Comput. Fluids
39
,
2090
2100
(
2010
).
3.
Ai
,
C.
and
Jin
,
S.
, “
A multi-layer non-hydrostatic model for wave breaking and rup-up
,”
Coastal Eng.
62
,
1
8
(
2012
).
4.
Ai
,
C.
,
Jin
,
S.
, and
Lv
,
B.
, “
A new fully non-hydrostatic 3D free surface flow model for water wave motions
,”
Int. J. Numer. Methods Fluids
66
,
1354
1370
(
2011
).
5.
Ai
,
C.
,
Ma
,
Y.
,
Yuan
,
C.
, and
Dong
,
G.
, “
Development and assessment of semi-implicit nonhydrostatic models for surface water waves
,”
Ocean Modell.
144
,
101489
(
2019a
).
6.
Ai
,
C.
,
Ma
,
Y.
,
Yuan
,
C.
, and
Dong
,
G.
, “
A 3D non-hydrostatic model for wave interactions with structures using immersed boundary method
,”
Comput. Fluids
186
,
24
37
(
2019b
).
7.
Ai
,
C.
,
Ma
,
Y.
,
Yuan
,
C.
, and
Dong
,
G.
, “
Non-hydrostatic model for internal wave generations and propagations using immersed boundary method
,”
Ocean Eng.
225
,
108801
(
2021a
).
8.
Ai
,
C.
,
Ma
,
Y.
,
Yuan
,
C.
,
Xie
,
Z.
, and
Dong
,
G.
, “
A three-dimensional non-hydrostatic model for tsunami waves generated by submarine landslides
,”
Appl. Math. Modell.
96
,
1
19
(
2021b
).
9.
Aricò
,
C.
and
Re
,
L. C.
, “
A non-hydrostatic pressure distribution solver for the nonlinear shallow water equations over irregular topography
,”
Adv. Water Resour.
98
,
47
69
(
2016
).
10.
Aureli
,
F.
,
Maranzoni
,
A.
,
Mignosa
,
P.
, and
Ziveri
,
C.
, “
Dam-break flows: Acquisition of experimental data through an imaging technique and 2D numerical modeling
,”
J. Hydraul. Eng.
134
(
8
),
1089
1101
(
2008
).
11.
Biscarini
,
C.
,
Francesco
,
S. D.
, and
Manciola
,
P.
, “
CFD modeling approach for dam break flow studies
,”
Hydrol. Earth Syst. Sci.
14
,
705
718
(
2010
).
12.
Bristeau
,
M. O.
,
Goutal
,
N.
, and
Sainte-Marie
,
J.
, “
Numerical simulations of a non-hydrostatic shallow water model
,”
Comput. Fluids
47
,
51
64
(
2011
).
13.
Brufau
,
P.
,
Vazquez-Cendon
,
M. E.
, and
Garcia-Navarro
,
P.
, “
A numerical model for the flooding and drying of irregular domains
,”
Int. J. Numer. Methods Fluids
39
,
247
275
(
2002
).
14.
Cantero-Chinchilla
,
F. N.
,
Castro-Orgaz
,
O.
,
Dey
,
S.
, and
Ayuso
,
J. L.
, “
Nonhydrostatic dam break Flows. I: Physical equations and numerical schemes
,”
J. Hydraul. Eng.
142
(
12
),
04016068
(
2016
).
15.
Castro-Orgaz
,
O.
,
Hutter
,
K.
,
Giraldez
,
J. V.
, and
Hager
,
W. H.
, “
Nonhydrostatic granular flow over 3D terrain: New Boussinesq-type gravity waves?
,”
J. Geophys. Res.: Earth Surf.
120
(
1
),
1
28
, (
2015
).
16.
Casulli
,
V.
and
Zanolli
,
P.
, “
Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems
,”
Math. Comput. Modell.
36
,
1131
1149
(
2002
).
17.
Chang
,
T. J.
,
Chang
,
K. H.
, and
Kao
,
H. M.
, “
A new approach to model weakly nonhydrostatic shallow water flows in open channels with smoothed particle hydrodynamics
,”
J. Hydrol.
519
,
1010
1019
(
2014
).
18.
Chang
,
T. J.
,
Kao
,
H. M.
,
Chang
,
K. H.
, and
Hsu
,
M. H.
, “
Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics
,”
J. Hydrol.
408
,
78
90
(
2011
).
19.
Dottori
,
F.
and
Todini
,
E.
, “
Testing a simple 2D hydraulic model in an urban flood experiment
,”
Hydrol. Processes
27
,
1301
1320
(
2013
).
20.
Duy
,
T.-N.
,
Nguyen
,
V.-T.
,
Phan
,
T.-H.
, and
Park
,
W.-G.
, “
An enhancement of coupling method for interface computations in incompressible two-phase flows
,”
Comput. Fluids
214
,
104763
(
2021
).
21.
Ferrari
,
A.
,
Fraccarollo
,
L.
,
Dumbser
,
M.
,
Toro
,
E. F.
, and
Armanini
,
A.
, “
Three-dimensional flow evolution after a dam break
,”
J. Fluid Mech.
663
,
456
477
(
2010
).
22.
Fraccarollo
,
L.
and
Toro
,
E. F.
, “
Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems
,”
J. Hydraul. Res.
33
(
6
),
843
864
(
1995
).
23.
Fyhn
,
E. H.
,
Lervåg
,
K. Y.
,
Ervik
,
Å.
, and
Wilhelmsen
,
Ø.
, “
A consistent reduction of the two-layer shallow-water equations to an accurate one-layer spreading model
,”
Phys. Fluids
31
,
122103
(
2019
).
24.
Hirt
,
C. W.
and
Nichols
,
B. D.
, “
Volume of fluid (VOF) method for the dynamic of free boundaries
,”
J. Comput. Phys.
39
,
201
255
(
1981
).
25.
Hosoda
,
T.
and
Tada
,
A.
, “
Free surface profile analysis on open channel flow by means of 1D basic equations with effect of vertical acceleration
,”
JSCE Annu. J. Hydraul. Eng.
38
,
457
462
(
1994
) (in Japaness).
26.
Ii
,
S.
,
Xie
,
B.
, and
Xiao
,
F.
, “
An interface capturing method with a continuous function: The THINC method on unstructured triangular and tetrahedral meshes
,”
J. Comput. Phys.
259
,
260
269
(
2014
).
27.
IMPACT
,
2004
, see www.impact-project.net.
28.
Jeong
,
W.
,
Yoon
,
J. S.
, and
Cho
,
Y. S.
, “
Numerical study on effects of building groups on dam-break flow in urban areas
,”
J. Hydro-environ. Res.
6
,
91
99
(
2012
).
29.
Kao
,
H. M.
and
Chang
,
T. J.
, “
Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics
,”
J. Hydrol.
448–449
,
232
244
(
2012
).
30.
Kennedy
,
A. B.
,
Chen
,
Q.
,
Kirby
,
J. T.
, and
Dalrymple
,
R. A.
, “
Boussinesq modeling of wave transformation, breaking, and runup. I: 1D
,”
J. Waterw., Port, Coastal, Ocean Eng.
126
,
39
47
(
2000
).
31.
Khankandi
,
A. F.
,
Tahershamsi
,
A.
, and
Soares-Frazão
,
S.
, “
Experimental investigation of reservoir geometry effect on dam-break flow
,”
J. Hydraul. Res.
50
(
4
),
376
387
(
2012
).
32.
Kim
,
B.
,
Sanders
,
B. F.
,
Schubert
,
J. E.
, and
Famiglietti
,
J. S.
, “
Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver
,”
Adv. Water Resour.
68
,
42
61
(
2014
).
33.
Kim
,
D. H.
and
Lynett
,
P. J.
, “
Dispersive and nonhydrostatic pressure effects at the front of surge
,”
J. Hydraul. Eng.
137
(
7
),
754
765
(
2011
).
34.
Kocaman
,
S.
and
Ozmen-Cagatay
,
H.
, “
The effect of lateral channel contraction on dam break flows: Laboratory experiment
,”
J. Hydrol.
432–433
,
145
153
(
2012
).
35.
Kramer
,
S. C.
and
Stelling
,
G. S.
, “
A conservative unstructured scheme for rapidly varied flows
,”
Int. J. Numer. Methods Fluids
58
,
183
212
(
2008
).
36.
Lai
,
J. S.
,
Lin
,
G. F.
, and
Guo
,
W. D.
, “
An upstream flux-splitting finite-volume scheme for 2D shallow water equations
,”
Int. J. Numer. Methods Fluids
48
,
1149
1174
(
2005
).
37.
Lai
,
Z.
,
Chen
,
C.
,
Cowles
,
G. W.
, and
Beardsley
,
R. C.
, “
A nonhydrostatic version of FVCOM: 2. Mechanistic study of tidally generated nonlinear internal waves in Massachusetts Bay
,”
J. Geophys. Res.
115
,
C12049
, (
2010
).
38.
LaRocque
,
L. A.
,
Imran
,
J.
, and
Chaudhyr
,
M. H.
, “
Experimental and numerical investigations of two-dimensional dam-break flows
,”
J. Hydraul. Eng.
139
(
6
),
569
579
(
2013
).
39.
Li
,
Y. L.
,
Ma
,
C. P.
,
Zhang
,
X. H.
,
Wang
,
K. P.
, and
Jiang
,
D. P.
, “
Three-dimensional numerical simulation of violent free surface deformation based on a coupled level set and volume of fluid method
,”
Ocean Eng.
210
,
106794
(
2020
).
40.
Ling
,
K.
,
Zhang
,
S.
,
Wu
,
P.-Z.
,
Yang
,
S.-Y.
, and
Tao
,
W.-Q.
, “
A coupled volume-of-fluid and level-set method (VOSET) for capturing interface of two-phase flows in arbitrary polygon grid
,”
Int. J. Heat Mass Transfer
143
,
118565
(
2019
).
41.
Lu
,
X.
,
Mao
,
B.
,
Zhang
,
X.
, and
Ren
,
S.
, “
Well-balanced and shock-capturing solving of 3D shallow-water equations involving rapid wetting and drying with a local 2D transition approach
,”
Comput. Methods Appl. Mech. Eng.
364
,
112897
(
2020
).
42.
Ma
,
G.
,
Farahani
,
A. A.
,
Kirby
,
J. T.
, and
Shi
,
F.
, “
Modeling wave-structure interactions by an immersed boundary method in a σ-coordinate model
,”
Ocean Eng.
125
,
238
247
(
2016
).
43.
Ma
,
G.
,
Shi
,
F.
, and
Kirby
,
J. T.
, “
Shock-capturing non-hydrostatic model for fully dispersive surface wave processes
,”
Ocean Modell.
43–44
,
22
35
(
2012
).
44.
Ma
,
Y.
,
Yuan
,
C.
,
Ai
,
C.
, and
Dong
,
G.
, “
Comparison between a non-hydrostatic model and OpenFOAM for 2D wave-structure interactions
,”
Ocean Eng.
183
,
419
425
(
2019
).
45.
Marsooli
,
R.
and
Wu
,
W.
, “
3-D finite-volume model of dam-break flow over uneven beds based on VOF method
,”
Adv. Water Resour.
70
,
104
117
(
2014
).
46.
Mignot
,
E.
and
Cienfuegos
,
R.
, “
On the application of a Boussinesq model to river flows including shocks
,”
Coastal Eng.
56
,
23
31
(
2009
).
47.
Mingham
,
C. G.
and
Causon
,
D. M.
, “
High-resolution finite-volume method for shallow water flows
,”
J. Hydraul. Eng.
124
(
6
),
605
614
(
1998
).
48.
Mintgen
,
F.
and
Manhart
,
M.
, “
A bi-directional coupling of 2D shallow water and 3D Reynolds-averaged Navier–Stokes models
,”
J. Hydraul. Res.
56
(
6
),
771
785
(
2018
).
49.
Mohapatra
,
P. K.
and
Chaudhry
,
M. H.
, “
Numerical solution of Boussinesq equations to simulate dam-break flows
,”
J. Hydraul. Eng.
130
(
2
),
156
159
(
2004
).
50.
Munoz
,
D. H.
and
Constantinescu
,
G.
, “
3-D dam break flow simulations in simplified and complex domains
,”
Adv. Water Resour.
137
,
103510
(
2020
).
51.
O'Donoghue
,
T.
,
Pokrajac
,
D.
, and
Hondebrink
,
L. J.
, “
Laboratory and numerical study of dambreak-generated swash on impermeable slopes
,”
Coastal Eng.
57
(
5
),
513
530
(
2010
).
52.
Oishi
,
Y.
,
Piggott
,
M. D.
,
Maeda
,
T.
,
Kramer
,
S. C.
,
Collins
,
G. S.
,
Tsushima
,
H.
, and
Furumura
,
T.
, “
Three-dimensional tsunami propagation simulations using an unstructured mesh finite element model
,”
J. Geophys. Res.: Solid Earth
118
(
6
),
2998
3018
, (
2013
).
53.
Ortiz
,
P.
, “
Shallow water flows over flooding areas by a flux-corrected finite element method
,”
J. Hydraul. Res.
52
(
2
),
241
252
(
2014
).
54.
Osher
,
S.
and
Sethian
,
J. A.
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations
,”
J. Comput. Phys.
79
,
12
49
(
1988
).
55.
Ozmen-Cagatay
,
H.
and
Kocaman
,
S.
, “
Dam-break flows during initial stage using SWE and RANS approaches
,”
J. Hydraul. Res.
48
(
5
),
603
611
(
2010
).
56.
Ozmen-Cagatay
,
H.
and
Kocaman
,
S.
, “
Dam-break flow in the presence of obstacle: Experiment and CFD simulation
,”
Eng. Appl. Comput. Fluid Mech.
5
(
4
),
541
552
(
2011
).
57.
Pan
,
W.
,
Kramer
,
S. C.
,
Kärnäb
,
T.
, and
Piggott
,
M. D.
, “
Comparing non-hydrostatic extensions to a discontinuous finite element coastal ocean model
,”
Ocean Modell.
151
,
101634
(
2020
).
58.
Perot
,
B.
, “
Conservation properties of unstructured staggered mesh schemes
,”
J. Comput. Phys.
159
,
58
89
(
2000
).
59.
Rijnsdorp
,
D. P.
and
Zijlema
,
M.
, “
Simulating waves and their interactions with a restrained ship using a non-hydrostatic wave-flow model
,”
Coastal Eng.
114
,
119
136
(
2016
).
60.
Rodi
,
W.
,
Turbulence Models and Their Applications in Hydraulics
, 2nd ed. (
Delft
,
1984
).
61.
Shigematsu
,
T.
,
Liu
,
P. L.-F.
, and
Oda
,
K.
, “
Numerical modeling of the initial stages of dam-break waves
,”
J. Hydraul. Res.
42
(
2
),
183
195
(
2004
).
62.
Shirkavand
,
A.
and
Badiei
,
P.
, “
The application of a Godunov-type shock capturing scheme for the simulation of waves from deep water up to the swash zone
,”
Coastal Eng.
94
,
1
9
(
2014
).
63.
Smagorinsky
,
J.
, “
General circulation experiments with the primitive equations: 1. The basic experiment
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
64.
Soares-Frazão
,
S.
, “
Experiments of dam-break wave over a triangular bottom sill
,”
J. Hydraul. Res.
45
,
19
26
(
2007
).
65.
Soares-Frazão
,
S.
,
Morris
,
M.
, and
Zech
,
Y.
, “
Concerted action on dambreak modelling: Objectives
,” in
Project Report, Test Cases, Meeting Proceedings
,
Université catholique de Louvain, Civil Engineering Department, Hydraulics Division
,
Louvain-la-Neuve, Belgium
,
2000
.
66.
Soares-Frazão
,
S.
and
Zech
,
Y.
, “
Dam break in channels with 90° bend
,”
J. Hydraul. Eng.
128
(
11
),
956
968
(
2002
).
67.
Stansby
,
P. K.
,
Chegini
,
A.
, and
Barnes
,
T. C. D.
, “
The initial stages of dam-break flow
,”
J. Fluid Mech.
374
,
407
424
(
1998
).
68.
Testa
,
G.
,
Zuccala
,
D.
,
Alcrud
,
F.
,
Mulet
,
J.
, and
Soares-Frazão
,
S.
, “
Flash flood flow experiment in a simplified urban district
,”
J. Hydraul. Res.
45
,
37
44
(
2007
).
69.
Tonelli
,
M.
and
Petti
,
M.
, “
Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone
,”
Ocean Eng.
37
,
567
582
(
2010
).
70.
Vasarmidis
,
P.
,
Stratigaki
,
V.
,
Suzuki
,
T.
,
Zijlema
,
M.
, and
Troch
,
P.
, “
Internal wave generation in a non-hydrostatic wave model
,”
Water
11
(
5
),
986
(
2019
).
71.
Wu
,
C. H.
,
Young
,
C. C.
,
Chen
,
Q.
, and
Lynett
,
P. J.
, “
Efficient nonhydrostatic modeling of surface waves from deep to shallow water
,”
J. Waterw., Port, Coastal, Ocean Eng.
136
(
2
),
104
118
(
2010
).
72.
Xie
,
B.
and
Xiao
,
F.
, “
Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature
,”
J. Comput. Phys.
349
,
415
440
(
2017
).
73.
Xie
,
Z.
,
Stoesser
,
T.
, and
Xia
,
J.
, “
Simulation of three-dimensional free-surface dam-break flows over a cuboid, cylinder, and sphere
,”
J. Hydraul. Eng.
147
(
9
),
06021009
(
2021
).
74.
Young
,
C. C.
,
Wu
,
C. H.
,
Liu
,
W.
, and
Kuo
,
J.
, “
A higher-order non-hydrostatic σ model for simulating non-linear refraction-diffraction of water waves
,”
Coastal Eng.
56
,
919
930
(
2009
).
75.
Zhao
,
D. H.
,
Shen
,
H. W.
,
Tabios
,
G. Q.
,
Lai
,
J. S.
, and
Tan
,
W. Y.
, “
Finite-volume two-dimensional unsteady-flow model for river basins
,”
J. Hydraul. Eng.
120
(
7
),
863
882
(
1994
).
76.
Zhao
,
F.
,
Gan
,
J.
, and
Xu
,
K.
, “
The study of shallow water flow with bottom topography by high-order compact gaskinetic scheme on unstructured mesh
,”
Phys. Fluids
33
,
083613
(
2021
).
77.
Zijlema
,
M.
and
Stelling
,
G. S.
, “
Further experiences with computing non-hydrostatic free-surface flows involving water waves
,”
Int. J. Numer. Methods Fluids
48
,
169
197
(
2005
).
You do not currently have access to this content.