In this paper, we develop one of the first models for closed-form fully analytical solutions for describing the nonionic and ionic diffusio-osmotic (DOS) transport at interfaces grafted with a soft and porous polymeric film in the presence of a neutral solute concentration gradient (for nonionic diffusio-osmosis) and a salt concentration gradient (for ionic diffusio-osmosis). The nonionic DOS velocity depends on this solute concentration gradient and the drag force from the polymeric film. The ionic DOS transport is characterized by the diffusio-osmotically induced electric field and the diffusio-osmotically induced velocity field. This induced electric field is primarily dictated by the conduction of the mobile ion imbalance present within the electric double layer, induced at the charged solid, in the presence of the applied salt concentration gradient. The DOS velocity, on the other hand, is driven by a combination of the induced pressure gradient and an induced electro-osmotic body force (triggered by this induced electric field) and is opposed by the drag from the polymer layer. The result is a velocity field whose magnitude increases rapidly at near wall locations, decreases away from the wall, and depending on the salt concentration, may or may not increase outside the polymeric layer. This unique velocity profile ensures the presence of significant hydrodynamic shear stress across a wide zone extending from the wall in a non-confined fluidic system: This will ensure that finite-sized species (e.g., biological cells) can be conveniently made to access locations of large hydrodynamic stresses for a myriad of engineering and biological applications.

1.
M.
Ali
,
B.
Yameen
,
R.
Neumann
,
W.
Ensinger
,
W.
Knoll
, and
O.
Azzaroni
, “
Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries
,”
J. Am. Chem. Soc.
130
,
16351
16357
(
2008
).
2.
S.
Umehara
,
M.
Karhanek
,
R. W.
Davis
, and
N.
Pourmand
, “
Label-free biosensing with functionalized nanopipette probes
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
4611
4616
(
2009
).
3.
S.-L.
Cai
,
S.-H.
Cao
,
Y.-B.
Zheng
,
S.
Zhao
,
J.-L.
Yang
, and
Y.-Q.
Li
, “
Surface charge modulated aptasensor in a single glass conical nanopore
,”
Biosens. Bioelectron.
71
,
37
43
(
2015
).
4.
M.
Ali
,
P.
Ramirez
,
S.
Mafe
,
R.
Neumann
, and
W.
Ensinger
, “
A pH tunable nanofluidic diode with a broad range of rectifying properties
,”
ACS Nano
3
,
603
608
(
2009
).
5.
B.
Vilozny
,
A. L.
Wollenberg
,
P.
Actis
,
D.
Hwang
,
B.
Singaram
, and
N.
Pourmand
, “
Carbohydrate-actuated nanofluidic diode: Switchable current rectification in a nanopipette
,”
Nanoscale
5
,
9214
9221
(
2013
).
6.
C. Y.
Lin
,
J. P.
Hsu
, and
L. H.
Yeh
, “
Rectification of ionic current in nanopores functionalized with bipolar polyelectrolyte brushes
,”
Sens. Actuators, B
258
,
1223
1229
(
2018
).
7.
T. W.
Lin
,
J. P.
Hsu
,
C. Y.
Lin
, and
S.
Tseng
, “
Dual pH gradient and voltage modulation of ion transport and current rectification in biomimetic nanopores functionalized with a pH-tunable polyelectrolyte
,”
J. Phys. Chem. C
123
,
12437
12443
(
2019
).
8.
Y. T.
Chen
and
J. P.
Hsu
, “
Space charge modulation and ion current rectification of a cylindrical nanopore functionalized with polyelectrolyte brushes subject to an applied pH-gradient
,”
J. Colloid Interface Sci.
605
,
571
581
(
2022
).
9.
H. S.
Sachar
,
V. S.
Sivasankar
, and
S.
Das
, “
Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory
,”
Soft Matter
15
(
29
),
5973
5986
(
2019
).
10.
G.
Chen
,
H. S.
Sachar
, and
S.
Das
, “
Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration
,”
Soft Matter
14
(
25
),
5246
5255
(
2018
).
11.
J.
Patwary
,
G.
Chen
, and
S.
Das
, “
Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density
,”
Microfluid. Nanofluid.
20
(
2
),
37
(
2016
).
12.
S.
Chanda
,
S.
Sinha
, and
S.
Das
, “
Streaming potential and electroviscous effects in soft nanochannels: Towards designing more efficient nanofluidic electrochemomechanical energy converters
,”
Soft Matter
10
(
38
),
7558
7568
(
2014
).
13.
J.
Zhang
,
K.
Zhan
,
S.
Wang
, and
X.
Hou
, “
Soft interface design for electrokinetic energy conversion
,”
Soft Matter
16
,
2915
2927
(
2020
).
14.
Y.
Jian
,
F.
Li
,
Y.
Liu
,
L.
Chang
,
Q.
Liu
, and
L.
Yang
, “
Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel
,”
Colloids Surf., B
156
,
405
413
(
2017
).
15.
A.
Koranlou
,
S. N.
Ashrafizadeh
, and
A.
Sadeghi
, “
Enhanced electrokinetic energy harvesting from soft nanochannels by the inclusion of ionic size
,”
J. Phys. D: Appl. Phys.
52
,
155502
(
2019
).
16.
Q.
Yang
,
L.
Li
,
F.
Zhao
,
H.
Han
,
W.
Wang
,
Y.
Tian
,
Y.
Wang
,
Z.
Ye
, and
X.
Guo
, “
Hollow silica-polyelectrolyte composite nanoparticles for controlled drug delivery
,”
J. Mater. Sci.
54
,
2552
2565
(
2019
).
17.
T.
Basinska
,
M.
Gadzinowski
,
D.
Mickiewicz
, and
S.
Slomkowski
, “
Functionalized particles designed for targeted delivery
,”
Polymers
13
,
2022
(
2021
).
18.
D.
Li
,
L.
Xu
,
J.
Wang
, and
J. E.
Gautrot
, “
Responsive polymer brush design and emerging applications for nanotheranostics
,”
Adv. Healthcare Mater.
10
,
2000953
(
2021
).
19.
S. D.
Anderson
,
V. V.
Gwenin
, and
C. D.
Gwenin
, “
Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications
,”
Nanoscale Res. Lett.
14
,
188
(
2019
).
20.
H.
ShamsiJazeyi
,
C. A.
Miller
,
M. S.
Wong
,
J. M.
Tour
, and
R.
Verduzco
, “
Polymercoated nanoparticles for enhanced oil recovery
,”
J. Appl. Polym. Sci.
131
,
40576
.(
2014
).
21.
A.
Behzadi
and
A.
Mohammadi
, “
Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery
,”
J. Nanopart. Res.
18
,
266
(
2016
).
22.
G.
Liu
,
M.
Cai
,
X.
Wang
,
F.
Zhou
, and
W.
Liu
, “
Core-shell-corona-structured polyelectrolyte brushes-grafting magnetic nanoparticles for water harvesting
,”
ACS Appl. Mater. Interfaces
6
,
11625
11632
(
2014
).
23.
C.
Zhou
,
L.
Mei
,
Y. S.
Su
,
L. H.
Yeh
,
X.
Zhang
, and
S.
Qian
, “
Gated ion transport in a soft nanochannel with biomimetic polyelectrolyte brush layers
,”
Sens. Actuators, B
229
,
305
314
(
2016
).
24.
Y.
Zuo
,
G.
Wang
,
Y.
Yu
,
C.
Zuo
,
Z.
Liu
,
D.
Hu
, and
Y.
Wang
, “
Suppression of electroosmotic flow by polyampholyte brush
,”
Microfluid. Nanofluid.
17
,
923
(
2014
).
25.
E. B.
Zhulina
and
M.
Rubinstein
, “
Lubrication by polyelectrolyte brushes
,”
Macromolecules
47
,
5825
5838
(
2014
).
26.
S.
Biagi
,
L.
Rovigatti
,
M.
Abbasi
,
L.
Bureau
,
F.
Sciortino
, and
C.
Misbah
, “
Hydrodynamic instability and flow reduction in polymer brush coated channels
,”
Soft Matter
17
,
9235
9245
(
2021
).
27.
G.
Chen
and
S.
Das
, “
Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes
,”
J. Phys. Chem. B
121
,
3130
3141
(
2017
).
28.
R. S.
Maheedhara
,
H. S.
Sachar
,
H.
Jing
, and
S.
Das
, “
Ionic diffusoosmosis in nanochannels grafted with end-charged polyelectrolyte brushes
,”
J. Phys. Chem. B
122
,
7450
7461
(
2018
).
29.
R. S.
Maheedhara
,
H.
Jing
,
H. S.
Sachar
, and
S.
Das
, “
Highly enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels
,”
Phys. Chem. Chem. Phys.
20
,
24300
24316
(
2018
).
30.
V. S.
Sivasankar
,
S. A.
Etha
,
H. S.
Sachar
, and
S.
Das
, “
Thermo-osmotic transport in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory
,”
J. Fluid Mech.
917
,
A31
(
2021
).
31.
V. S.
Sivasankar
,
S. A.
Etha
,
H. S.
Sachar
, and
S.
Das
, “
Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits
,”
Phys. Rev. E
102
,
013103
(
2020
).
32.
V. S.
Sivasankar
,
S. A.
Etha
,
H. S.
Sachar
, and
S.
Das
, “
Ionic diffusioosmotic transport in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory
,”
Phys. Fluids
32
,
042003
(
2020
).
33.
E. F.
Silkina
,
N.
Bag
, and
O. I.
Vinogradova
, “
Surface and zeta potentials of charged permeable nanocoatings
,”
J. Chem. Phys.
154
(
16
),
164701
(
2021
).
34.
E. F.
Silkina
,
N.
Bag
, and
O. I.
Vinogradova
, “
Electro-osmotic properties of porous permeable films
,”
Phys. Rev. Fluids
5
(
12
),
123701
(
2020
).
35.
O. I.
Vinogradova
,
E. F.
Silkina
,
N.
Bag
, and
E. S.
Asmolov
, “
Achieving large zeta-potentials with charged porous surfaces
,”
Phys. Fluids
32
(
10
),
102105
(
2020
).
36.
H. J.
Keh
, “
Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions
,”
Curr. Opin. Colloid Interface Sci.
24
,
13
(
2016
).
37.
H. J.
Keh
and
H. C.
Ma
, “
Diffusioosmosis of electrolyte solutions along a charged plane wall
,”
Langmuir
21
,
5461
(
2005
).
38.
L. Y.
Hsu
and
H. J.
Keh
, “
Diffusioosmosis of electrolyte solutions around a circular cylinder at arbitrary zeta potential and double-layer thickness
,”
Ind. Eng. Chem. Res.
48
,
2443
(
2009
).
39.
H. C.
Ma
and
H. J.
Keh
, “
Diffusioosmosis of electrolyte solutions in a fine capillary slit
,”
J. Colloid Interface Sci.
298
,
476
(
2006
).
40.
H. C.
Ma
and
H. J.
Keh
, “
Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers
,”
J. Colloid Interface Sci.
313
,
686
(
2007
).
41.
S.
Qian
,
B.
Das
, and
X.
Luo
, “
Diffusioosmotic flows in slit nanochannels
,”
J. Colloid Interface Sci.
315
,
721
(
2007
).
42.
H. J.
Keh
and
H. C.
Ma
, “
Diffusioosmosis of electrolyte solutions in fine capillaries
,”
Colloids Surf., A
233
,
87
(
2004
).
43.
V.
Hoshyargar
,
S. N.
Ashrafizadeh
, and
A.
Sadeghi
, “
Drastic alteration of diffusioosmosis due to steric effects
,”
Phys. Chem. Chem. Phys.
17
,
29193
(
2015
).
44.
V.
Hoshyargar
,
S. N.
Ashrafizadeh
, and
A.
Sadeghi
, “
Diffusioosmotic flow in rectangular microchannels
,”
Electrophoresis
37
,
809
817
(
2016
).
45.
H. J.
Keh
and
H. C.
Ma
, “
Diffusioosmosis of electrolyte solutions in a fine capillary tube
,”
Langmuir
23
,
2879
(
2007
).
46.
I.
Cho
,
W.
Kim
,
J.
Kim
,
H.-Y.
Kim
,
H.
Lee
, and
S. J.
Kim
, “
Non-negligible diffusio-osmosis inside an ion concentration polarization layer
,”
Phys. Rev. Lett.
116
,
254501
(
2016
).
47.
H. J.
Keh
and
L. Y.
Hsu
, “
Diffusioosmosis of electrolyte solutions in fibrous porous media
,”
Microfluid. Nanofluid.
5
,
347
(
2008
).
48.
L.
Anderson
,
M. E.
Lowell
, and
D. C.
Prieve
, “
Motion of a particle generated by chemical gradients. I. Non-electrolytes
,”
J. Fluid Mech.
117
,
107
(
1982
).
49.
C.
Lee
,
C.
Cottin-Bizonne
,
R.
Fulcrand
,
L.
Joly
, and
C.
Ybert
, “
Nanoscale dynamics versus surface interactions: What dictates osmotic transport?
,”
J. Phys. Chem. Lett.
8
,
478
(
2017
).
50.
M.
Shen
,
F.
Ye
,
R.
Liu
,
K.
Chen
,
M.
Yang
, and
M.
Ripoll
, “
Chemically driven fluid transport in long microchannels
,”
J. Chem. Phys.
145
,
124119
(
2016
).
51.
S.
Marbach
,
H.
Yoshida
, and
L.
Bocquet
, “
Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches
,”
J. Chem. Phys.
146
,
194701
(
2017
).
52.
H.
Yoshida
,
S.
Marbach
, and
L.
Bocquet
, “
Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations
,”
J. Chem. Phys.
146
,
194702
(
2017
).
53.
A.
Ajdari
and
L.
Bocquet
, “
Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond
,”
Phys. Rev. Lett.
96
,
186102
(
2006
).
54.
C.
Lee
,
C.
Cottin-Bizonne
,
A.-L.
Biance
,
P.
Joseph
,
L.
Bocquet
, and
C.
Ybert
, “
Osmotic flow through fully permeable nanochannels
,”
Phys. Rev. Lett.
112
,
244501
(
2014
).
55.
I.
Ortiz-Rivera
,
H.
Shum
,
A.
Agrawal
,
A.
Sen
, and
A. C.
Balazs
, “
Convective flow reversal in self-powered enzyme micropumps
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
2585
(
2016
).
56.
V.
Hoshyargar
,
S. N.
Ashrafizadeh
, and
A.
Sadeghi
, “
Mass transport characteristics of diffusioosmosis: Potential applications for liquid phase transportation and separation
,”
Phys. Fluids
29
,
012001
(
2017
).
57.
D.
Feldmann
,
S. R.
Maduar
,
M.
Santer
,
N.
Lomadze
,
O. I.
Vinogradova
, and
S.
Santer
, “
Manipulation of small particles at solid liquid interface: Light driven diffusioosmosis
,”
Sci. Rep.
6
,
36443
(
2016
).
58.
H. J.
Keh
and
J. H.
Wu
, “
Electrokinetic flow in fine capillaries caused by gradients of electrolyte concentration
,”
Langmuir
17
,
4216
(
2001
).
59.
V.
Hoshyargar
,
A.
Sadeghi
, and
S. N.
Ashrafizadeh
, “
Bounded amplification of diffusioosmosis utilizing hydrophobicity
,”
RSC Adv.
6
,
49517
49526
(
2016
).
60.
B.
Vickroy
,
K.
Lorenz
, and
W.
Kelly
, “
Modeling shear damage to suspended CHO cells during cross‐flow filtration
,”
Biotechnol. Progr.
23
(
1
),
194
199
(
2007
).
61.
M. J.
Slattery
,
S.
Liang
, and
C.
Dong
, “
Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation
,”
Am. J. Physiol. Cell Physiol.
288
(
4
),
C831
C839
(
2005
).
62.
C.
Zhan
,
G.
Bidkhori
,
H.
Schwarz
,
M.
Malm
,
A.
Mebrahtu
,
R.
Field
,
C.
Sellick
,
D.
Hatton
,
P.
Varley
,
A.
Mardinoglu
,
J.
Rockberg
, and
V.
Chotteau
, “
Low shear stress increases recombinant protein production and high shear stress increases apoptosis in human cells
,”
iScience
23
(
11
),
101653
(
2020
).
63.
J. M.
Hope
,
M. R.
Bersi
,
J. A.
Dombroski
,
A. B.
Clinch
,
R. S.
Pereles
,
W. D.
Merryman
, and
M. R.
King
, “
Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death
,”
J. Cell Sci.
134
(
4
),
251470
(
2021
).
64.
W.
Luo
,
W.
Xiong
,
J.
Zhou
,
Z.
Fang
,
W.
Chen
,
Y.
Fan
, and
F.
Li
, “
Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells
,”
Acta Biochim. Biophys. Sin.
43
(
3
),
210
216
(
2011
).
65.
R.
Godoy‐Silva
,
J. J.
Chalmers
,
S. A.
Casnocha
,
L. A.
Bass
, and
N.
Ma
, “
Physiological responses of CHO cells to repetitive hydrodynamic stress
,”
Biotechnol. Bioeng.
103
(
6
),
1103
1117
(
2009
).
66.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
(
1
),
61
99
(
1989
).
67.
P. G.
De Gennes
, “
Dynamics of entangled polymer solutions. II. Inclusion of hydrodynamic interactions
,”
Macromolecules
9
,
594
(
1976
).
68.
K. F.
Freed
and
S. F.
Edwards
, “
Polymer viscosity in concentrated solutions
,”
J. Chem. Phys.
61
,
3626
(
1974
).
69.
I.
Williams
,
S.
Lee
,
A.
Apriceno
,
R. P.
Seard
, and
G.
Battaglia
, “
Diffusioosmotic and convective flows induced by a nonelectrolyte concentration gradient
,”
Proc. Natl. Acad. Sci. U.S.A.
117
,
25263
25271
(
2020
).
70.
D. B.
Das
,
V.
Nassehi
, and
R. J.
Wakeman
, “
A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions
,”
Adv. Environ. Res.
7
,
35
58
(
2002
).
71.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
,
197
207
(
1967
).
72.
G.
Neale
and
W.
Nader
, “
Practical significance of Brinkman's extension of Darcy's law: Coupled parallel flows within a channel and a bounding porous medium
,”
Can. J. Chem. Eng.
52
,
475
478
(
1974
).
73.
K.
Vafai
and
S.
Kim
, “
On the limitations of the Brinkman-Forchheimer-extended Darcy equation
,”
Int. J. Heat Fluid Flow
16
,
11
15
(
1995
).
74.
C.
Beckermann
,
R.
Viskanta
, and
S. R.
Ramadhyani
, “
Natural convection in vertical enclosures containing simultaneously fluid and porous layers
,”
J. Fluid Mech.
186
,
257
284
(
1988
).
75.
E.
Donath
and
V.
Pastushenko
, “
Electrophoretical study of cell surface properties. The influence of the surface coat on the electric potential distribution and on general electrokinetic properties of animal cells
,”
J. Electroanal. Chem.
104
,
543
554
(
1979
).
76.
H.
Ohshima
and
T.
Kondo
, “
Electrokinetic flow between two parallel plates with surface charge layers: Electro-osmosis and streaming potential
,”
J. Colloid Interface Sci.
135
(
2
),
443
448
(
1990
).
77.
J. F.
Duval
and
H. P.
van Leeuwen
, “
Electrokinetics of diffuse soft interfaces. I. Limit of low Donnan potentials
,”
Langmuir
20
(
23
),
10324
10336
(
2004
).
78.
J. F.
Duval
, “
Electrokinetics of diffuse soft interfaces. II. Analysis based on the nonlinear Poisson−Boltzmann equation
,”
Langmuir
21
(
8
),
3247
3258
(
2005
).
79.
Z.
Milne
,
L. H.
Yeh
,
T. H.
Chou
, and
S.
Qian
, “
Tunable Donnan potential and electrokinetic flow in a biomimetic gated nanochannel with pH-regulated polyelectrolyte brushes
,”
J. Phys. Chem. C
118
(
34
),
19806
19813
(
2014
).
80.
F.
Li
,
Y.
Jian
,
L.
Chang
,
G.
Zhao
, and
L.
Yang
, “
Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel
,”
Colloids Surf., B
147
,
234
241
(
2016
).
81.
P.
Kaushik
,
P. K.
Mondal
,
P. K.
Kundu
, and
S.
Wongwises
, “
Rotating electroosmotic flow through a polyelectrolyte-grafted microchannel: An analytical solution
,”
Phys. Fluids
31
(
2
),
022009
(
2019
).
82.
A.
Sadeghi
, “
Theoretical modeling of electroosmotic flow in soft microchannels: A variational approach applied to the rectangular geometry
,”
Phys. Fluids
30
(
3
),
032004
(
2018
).
83.
A.
Poddar
,
D.
Maity
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect
,”
Soft Matter
12
(
27
),
5968
5978
(
2016
).
84.
L.
Benson
,
L. H.
Yeh
,
T. H.
Chou
, and
S.
Qian
, “
Field effect regulation of Donnan potential and electrokinetic flow in a functionalized soft nanochannel
,”
Soft Matter
9
(
41
),
9767
9773
(
2013
).
85.
F.
Li
,
Y.
Jian
,
Z.
Xie
,
Y.
Liu
, and
Q.
Liu
, “
Transient alternating current electroosmotic flow of a Jeffrey fluid through a polyelectrolyte-grafted nanochannel
,”
RSC Adv.
7
(
2
),
782
790
(
2017
).
86.
J. S.
Sin
and
U. H.
Kim
, “
Ion size effect on electrostatic and electroosmotic properties in soft nanochannels with pH-dependent charge density
,”
Phys. Chem. Chem. Phys.
20
(
35
),
22961
22971
(
2018
).
87.
J.
Xing
and
Y.
Jian
, “
Steric effects on electroosmotic flow in soft nanochannels
,”
Meccanica
53
(
1
),
135
144
(
2018
).
88.
B.
Barman
,
D.
Kumar
,
P. P.
Gopmandal
, and
H.
Ohshima
, “
Electrokinetic ion transport and fluid flow in a pH-regulated polymer-grafted nanochannel filled with power-law fluid
,”
Soft Matter
16
(
29
),
6862
6874
(
2020
).
89.
M.
Mayur
,
S.
Amiroudine
, and
D.
Lasseux
, “
Free-surface instability in electro-osmotic flows of ultrathin liquid films
,”
Phys. Rev. E
85
,
046301
(
2012
).
90.
CRC Handbook of Chemistry and Physics
, edited by
W. M.
Haynes
(
CRC Press
,
2014
).
91.
C. C.
Chang
and
C. Y.
Wang
, “
Rotating electro-osmotic flow over a plate or between two plates
,”
Phys. Rev. E
84
,
056320
(
2011
).
92.
A. T.
Celebi
,
B.
Cetin
, and
A.
Beskok
, “
Molecular and continuum perspectives on intermediate and flow reversal regimes in electroosmotic transport
,”
J. Phys. Chem. C
123
,
14024
(
2019
).
93.
B.
Mallick
, “
Thermofluidic characteristics of electrokinetic flow in a rotating microchannel in presence of ion slip and Hall currents
,”
Int. Commun. Heat Mass Transfer
126
,
105350
(
2021
).
94.
H. J.
Chung
,
J.
Kim
,
K.
Ohno
, and
R. J.
Composto
, “
Controlling the location of nanoparticles in polymer blends by tuning the length and end group of polymer brushes
,”
ACS Macro Lett.
1
,
252
(
2012
).
95.
R.
Oren
,
Z.
Liang
,
J. S.
Barnard
,
S. C.
Warren
,
U.
Wiesner
, and
W. T.
Huck
, “
Organization of nanoparticles in polymer brushes
,”
J. Am. Chem. Soc.
131
,
1670
(
2009
).
96.
S.
Walta
,
F.
Di Lorenzo
,
K.
Ma
,
U.
Wiesner
,
W.
Richtering
, and
S.
Seiffert
, “
Diffusion of rigid nanoparticles in crowded polymer-network hydrogels: Dominance of segmental density over crosslinking density
,”
Colloid Polym. Sci.
295
,
1371
(
2017
).
97.
X.
Zhang
,
J.
Hansing
,
R. R.
Netz
, and
J. E.
DeRouchey
, “
Particle transport through hydrogels is charge asymmetric
,”
Biophys. J.
108
,
530
(
2015
).
98.
E.
Parrish
,
M. A.
Caporizzo
, and
R. J.
Composto
, “
Network confinement and heterogeneity slows nanoparticle diffusion in polymer gels
,”
J. Chem. Phys.
146
,
203318
(
2017
).
You do not currently have access to this content.