This study analyzes the kinematic characteristics and flow field information of zebrafish in straight and steering acceleration states using time-resolved particle image velocimetry to explore how vortices are generated and controlled to achieve the desired motion. The important role of the high- and low-pressure zones in the wake of zebrafish wavy propulsion is also presented by quantifying the pressure field around the zebrafish. With their precise body and motion control, fish have a movement advantage that cannot be achieved by artificial machinery. Exploring the evolutionary process of the fish structure and surrounding flow field during zebrafish autonomous propulsion is helpful for understanding the active control means and propulsion mechanism of fish. Zebrafish were constrained in a transparent water tank, and laser and image acquisitions systems were used to capture their spontaneous movement behavior. The results show that the pull provided by the low-pressure area and the thrust provided by the high-pressure area together provide the forward power of the zebrafish. The findings from this analysis of the bending control and propulsion mechanism of the zebrafish body can facilitate the optimal design of underwater vehicle propulsion methods, such as the propulsion efficiency and maneuverability of a bionic propeller.

1.
K. N.
Lucas
,
J. O.
Dabiri
, and
G. V.
Lauder
, “
A pressure-based force and torque prediction technique for the study of fish-like swimming
,”
PLoS One
12
,
e0189225
(
2017
).
2.
C. M.
Breder
, Jr.
, “
The locomotion of fishes
,”
Zoologica
4
,
159
291
(
1926
).
3.
R.
Bainbridge
, “
Problems of fish locomotion
,”
Symp. Zool. Soc. London
5
,
13
32
(
1961
).
4.
C. C.
Lindsey
, “
Form, function, and locomotory habits in fish
,”
Fish Physiol.
7
,
1
100
(
1978
).
5.
M.
Lighthill
, “
Large-amplitude elongated-body theory of fish locomotion
,”
Proc. R. Soc. London, Ser. B
179
,
125
138
(
1971
).
6.
J. J.
Videler
,
Fish Swimming
(
Springer Science & Business Media
,
The Netherlands
,
1993
).
7.
R.
Mason
and
J. W.
Burdick
, “
Experiments in carangiform robotic fish locomotion
,” in
IEEE International Conference on Robotics and Automation
(
2000
).
8.
M. W.
Westneat
and
J. A.
Walker
, “
Applied aspects of mechanical design, behavior, and performance of pectoral fin swimming in fishes
,” in
Proceedings of the Special Session on Bio-Engineering Research Related to Autonomous Underwater Vehicles, 10th International Symposium on Unmanned Untethered Submersible Technology
(
1997
), pp.
153
165
.
9.
A. C.
Gibb
,
B. C.
Jayne
, and
G. V.
Lauder
, “
Kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis macrochirus
,”
J. Exp. Biol.
189
,
133
161
(
1994
).
10.
E. M.
Standen
, “
Pelvic fin locomotor function in fishes: Three-dimensional kinematics in rainbow trout (Oncorhynchus mykiss)
,”
J. Exp. Biol.
211
,
2931
2942
(
2008
).
11.
G. V.
Lauder
and
P. G.
Madden
, “
Advances in comparative physiology from high-speed imaging of animal and fluid motion
,”
Annu. Rev. Physiol.
70
,
143
163
(
2008
).
12.
E. M.
Standen
and
G. V.
Lauder
, “
Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis)
,”
J. Exp. Biol.
210
,
325
339
(
2007
).
13.
I.
Borazjani
and
F.
Sotiropoulos
, “
On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming
,”
J. Exp. Biol.
213
,
89
107
(
2010
).
14.
A. J.
Smits
, “
Undulatory and oscillatory swimming
,”
J. Fluid Mech.
874
,
P1
(
2019
).
15.
U. K.
Müller
,
J.
Smit
,
E. J.
Stamhuis
, and
J. J.
Videler
, “
How the body contributes to the wake in undulatory fish swimming
,”
J. Exp. Biol.
204
,
2751
2762
(
2001
).
16.
E. G.
Drucker
and
G. V.
Lauder
, “
Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry
,”
J. Exp. Biol.
202
,
2393
2412
(
1999
).
17.
K.
Pekkan
,
B.
Chang
,
F.
Uslu
,
K.
Mani
,
C. Y.
Chen
, and
R.
Holzman
, “
Characterization of zebrafish larvae suction feeding flow using μPIV and optical coherence tomography
,”
Exp. Fluids
57
(
7
),
112
(
2016
).
18.
M. J.
Wolfgang
,
J. M.
Anderson
,
M. A.
Grosenbaugh
,
D. K.
Yue
, and
M. S.
Triantafyllou
, “
Near-body flow dynamics in swimming fish
,”
J. Exp. Biol.
202
,
2303
2327
(
1999
).
19.
B. P.
Epps
and
A. H.
Techet
, “
Impulse generated during unsteady maneuvering of swimming fish
,”
Exp. Fluids
43
,
691
700
(
2007
).
20.
A. M.
Shih
,
L.
Mendelson
, and
A. H.
Techet
, “
Archerfish jumping prey capture: Kinematics and hydrodynamics
,”
J. Exp. Biol.
220
,
1411
1422
(
2017
).
21.
L.
Mendelson
and
A. H.
Techet
, “
Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV
,”
Exp. Fluids
56
(
7
),
135
(
2015
).
22.
L.
Mendelson
and
A. H.
Techet
, “
Multi-camera volumetric PIV for the study of jumping fish
,”
Exp. Fluids
59
(
1
),
10
(
2018
).
23.
B. J.
Gemmell
,
S. M.
Fogerson
,
J. H.
Costello
,
J. R.
Morgan
,
J. O.
Dabiri
, and
S. P.
Colin
, “
How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust
,”
J. Exp. Biol.
219
,
3884
3895
(
2016
).
24.
P. W.
Webb
and
D.
Weihs
, “
Stability versus maneuvering: Challenges for stability during swimming by fishes
,”
Integr. Comput. Biol.
55
,
753
764
(
2015
).
25.
R.
Thandiackal
and
G. V.
Lauder
, “
How zebrafish turn: Analysis of pressure force dynamics and mechanical work
,”
J. Exp. Biol.
223
(
16
),
jeb223230
(
2020
).
26.
K.
Hosotani
,
S.
Ando
,
Y.
Ogata
, and
S.
Matsubara
, “
Contracting flow pattern induced by the staggered arrangement of oscillating fish-like fin propulsors-time-averaged flow structure obtained by 2D PIV measurement
,” in
IEEE International Conference on Robotics and Biomimetics
(
IEEE
,
2016
), pp.
904
909
.
27.
W.
Sun
,
Z.
Liu
,
Z.
Ren
,
G.
Wang
,
T.
Yuan
, and
L.
Wen
, “
Linear acceleration of an undulatory robotic fish with dynamic morphing median fin under the instantaneous self-propelled condition
,”
J. Bionic Eng.
17
(
2
),
241
253
(
2020
).
28.
W.
Li
,
T.
Wang
,
G.
Wu
, and
J.
Li
, “
A novel method based on a force-feedback technique for the hydrodynamic investigation of kinematic effects on robotic fish
,” in
Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China
(
2011
).
29.
A. P.
Mignano
,
S.
Kadapa
,
J.
Tangorra
, and
G.
Lauder
, “
Passing the wake: Using multiple fins to shape forces for swimming
,”
Biomimetics
4
,
23
(
2019
).
30.
V.
Mwaffo
,
Z.
Peng
,
S. R.
Cruz
, and
M.
Porfiri
, “
Zebrafish swimming in the flow: A particle image velocimetry study
,”
PeerJ
5
(
1
),
e4041
(
2017
).
31.
J. A.
Walker
, “
Estimating velocities and accelerations of animal locomotion: A simulation experiment comparing numerical differentiation algorithms
,”
Am. Soc. Civil Eng.
201
(
2
),
981
995
(
1998
).
32.
A. R.
Oxlade
,
P. C.
Valente
,
B.
Ganapathisubramani
, and
J. F.
Morrison
, “
Denoising of time-resolved PIV for accurate measurement of turbulence spectra and reduced error in derivatives
,”
Exp. Fluids
53
,
1561
1575
(
2012
).
33.
E.
Stamhuis
and
W.
Thielicke
,
PIVlab—A Time-Resolved Particle Image Velocimetry (PIV) Tool
(
2015
).
34.
J. O.
Dabiri
,
S.
Bose
,
B. J.
Gemmell
,
S. P.
Colin
, and
J. H.
Costello
, “
An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements
,”
J. Exp. Biol.
217
,
331
336
(
2013
).
35.
D.
Weihs
, “
A hydrodynamical analysis of fish turning manoeuvres
,”
Proc. R. Soc. London, Ser. B
182
,
59
72
(
1972
).
36.
D.
Weihs
, “
The mechanism of rapid starting of slender fish
,”
Biorheology
10
,
343
350
(
1973
).
37.
P. W.
Webb
, “
Fast-start performance and body form in seven species of teleost fish
,”
J. Exp. Biol.
74
,
211
226
(
1978
).
You do not currently have access to this content.