In this paper, we present a deep learning-based reduced-order model (DL-ROM) for the stability prediction of unsteady three-dimensional fluid–structure interaction systems. The proposed DL-ROM has the format of a nonlinear state-space model and employs a recurrent neural network with long short-term memory (LSTM) cells. We consider a canonical fluid–structure system of an elastically mounted sphere coupled with the incompressible fluid flow in a state-space format. Specifically, we develop a nonlinear data-driven coupling for predicting the unsteady forces and the vortex-induced vibration (VIV) lock-in of the freely vibrating sphere in a transverse direction. We design an input–output relationship as a temporal sequence of force and displacement datasets for a low-dimensional approximation of the fluid–structure system. Based on the prior knowledge of the VIV lock-in process, the input function contains a range of frequencies and amplitudes, which significantly affects the system realization ability and enables an efficient DL-ROM without the need for a massive training dataset for the low-dimensional modeling. Once trained, the network provides a nonlinear mapping of input–output dynamics that can predict the coupled fluid–structure dynamics for a longer horizon via the feedback process. By integrating the LSTM network with the eigensystem realization algorithm (ERA), we construct a data-driven state-space model for the reduced-order stability analysis. We investigate the underlying mechanism and stability characteristics of VIV of a freely vibrating sphere via an eigenvalue selection process. Using the reduced-order eigenvalue analysis, we characterize the vibrating sphere-wake lock-in phenomenon and demonstrate that the lock-in responds at preferred vibration frequencies. To understand the frequency lock-in mechanism, we study the eigenvalue trajectories for a range of the reduced oscillation frequencies and the mass ratios. Consistent with the full-order simulations, the frequency lock-in branches are accurately captured by the combined LSTM-ERA procedure. The proposed DL-ROM aligns with the development of physics-based digital twin of engineering systems involving moving boundaries and fluid–structure interactions.

1.
T.
Sarpkaya
, “
A critical review of the intrinsic nature of vortex-induced vibrations
,”
J. Fluids Struct.
19
,
389
447
(
2004
).
2.
C. H. K.
Williamson
and
R.
Govardhan
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
,
413
455
(
2004
).
3.
R. K.
Jaiman
and
V.
Joshi
,
Computational Mechanics of Fluid-Structure Interaction: Computational Methods for Coupled Fluid-Structure Analysis
(
Springer
,
2022
).
4.
R. K.
Jaiman
,
N. R.
Pillalamarri
, and
M. Z.
Guan
, “
A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow
,”
Comput. Methods Appl. Mech. Eng.
301
,
187
215
(
2016
).
5.
B.
Liu
and
R. K.
Jaiman
, “
Interaction dynamics of gap flow with vortex-induced vibration in side-by-side cylinder arrangement
,”
Phys. Fluids
28
(
12
),
127103
(
2016
).
6.
T. P.
Miyanawala
and
R. K.
Jaiman
, “
Decomposition of wake dynamics in fluid–structure interaction via low-dimensional models
,”
J. Fluid Mech.
867
,
723
764
(
2019
).
7.
E. J.
Tuegel
,
A. R.
Ingraffea
,
T. G.
Eason
, and
S.
Spottswood
, “
Reengineering aircraft structural life prediction using a digital twin
,”
Int. J. Aerosp. Eng.
2011
,
154798
.
8.
A.
Sareen
,
J.
Zhao
,
J.
Sheridan
,
K.
Hourigan
, and
M. C.
Thompson
, “
Vortex-induced vibrations of a sphere close to a free surface
,”
J. Fluid Mech.
846
,
1023
1058
(
2018
).
9.
M. M.
Rajamuni
,
M. C.
Thompson
, and
K.
Hourigan
, “
Transverse flow-induced vibrations of a sphere
,”
J. Fluid Mech.
837
,
931
(
2018
).
10.
A.
Chizfahm
,
V.
Joshi
, and
R.
Jaiman
, “
Transverse flow-induced vibrations of a sphere in the proximity of a free surface: A numerical study
,”
J. Fluids Struct.
101
,
103224
(
2021
).
11.
S.
Lall
,
J. E.
Marsden
, and
S.
Glavaski
, “
A subspace approach to balanced truncation for model reduction of nonlinear control systems
,”
Int. J. Robust Nonlinear Control
12
,
519
535
(
2002
).
12.
P.
Benner
,
S.
Gugercin
, and
K.
Willcox
, “
A survey of projection-based model reduction methods for parametric dynamical systems
,”
SIAM Rev.
57
(
4
),
483
531
(
2015
).
13.
C. W.
Rowley
and
S. T.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
14.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
(
1
),
539
575
(
1993
).
15.
B.
Moore
, “
Principal component analysis in linear systems: Controllability, observability, and model reduction
,”
IEEE Trans. Autom. Control
26
(
1
),
17
32
(
1981
).
16.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
17.
S.
Chaturantabut
and
D. C.
Sorensen
, “
Discrete empirical interpolation for nonlinear model reduction
,” in
Proceedings of the 48th IEEE Conference on Decision and Control, Held Jointly with the 28th Chinese Control Conference
(CDC/CCC 2009) (
IEEE
,
2009
), pp.
4316
4321
.
18.
L.
Zadeh
, “
On the identification problem
,”
IRE Trans. Circuit Theory
3
(
4
),
277
281
(
1956
).
19.
L.
Ljung
, “
System identification
,” in
Wiley Encyclopedia of Electrical and Electronics Engineering
(
John Wiley & Sons
,
1999
), pp.
1
19
.
20.
J.
Juang
and
R. S.
Pappa
, “
An eigensystem realization algorithm for modal parameter identification and model reduction
,”
J. Guid.
8
(
5
),
620
627
(
1985
).
21.
Z.
Ma
,
S.
Ahuja
, and
C. W.
Rowley
, “
Reduced-order models for control of fluids using the eigensystem realization algorithm
,”
Theor. Comput. Fluid Dyn.
25
(
1
),
233
247
(
2011
).
22.
W.
Yao
and
R. K.
Jaiman
, “
Model reduction and mechanism for the vortex-induced vibrations of bluff bodies
,”
J. Fluid Mech.
827
,
357
(
2017
).
23.
W.
Yao
and
R. K.
Jaiman
, “
Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm
,”
J. Fluid Mech.
827
,
394
414
(
2017
).
24.
S. R.
Bukka
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Stability analysis of passive suppression for vortex-induced vibration
,”
J. Fluid Mech.
886
,
A12
(
2020
).
25.
M.
Korda
and
I.
Mezić
, “
Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control
,”
Automatica
93
,
149
160
(
2018
).
26.
S.
Peitz
and
S.
Klus
, “
Koopman operator-based model reduction for switched-system control of PDEs
,”
Automatica
106
,
184
191
(
2019
).
27.
Z.
Liu
,
S.
Kundu
,
L.
Chen
, and
E.
Yeung
, “
Decomposition of nonlinear dynamical systems using Koopman Gramians
,” in
Annual American Control Conference (ACC)
(
IEEE
,
2018
), pp.
4811
4818
.
28.
I.
Mezić
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
29.
M.
Korda
and
I.
Mezić
, “
On convergence of extended dynamic mode decomposition to the Koopman operator
,”
J. Nonlinear Sci.
28
(
2
),
687
710
(
2018
).
30.
K. K.
Lin
and
F.
Lu
, “
Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism
,”
J. Comput. Phys.
424
,
109864
(
2021
).
31.
W.
Yao
and
R. K.
Jaiman
, “
A harmonic balance technique for the reduced-order computation of vortex-induced vibration
,”
J. Fluids Struct.
65
,
313
332
(
2016
).
32.
T. P.
Miyanawala
and
R. K.
Jaiman
, “
An efficient deep learning technique for the Navier-Stokes equations: Application to unsteady wake flow dynamics
,” arXiv:1710.09099 (
2017
).
33.
J.
Wang
,
J.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
(
3
),
034603
(
2017
).
34.
A. T.
Mohan
and
D. V.
Gaitonde
, “
A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks
,” arXiv:1804.09269 (
2018
).
35.
Z.
Wang
,
D.
Xiao
,
F.
Fang
,
R.
Govindan
,
C. C.
Pain
, and
Y.
Guo
, “
Model identification of reduced order fluid dynamics systems using deep learning
,”
Int. J. Numer. Methods Fluids
86
(
4
),
255
268
(
2018
).
36.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
(
7553
),
436
(
2015
).
37.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
38.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition for fluid dynamics
,” arXiv:1906.04029 (
2019
).
39.
S. R.
Bukka
,
R.
Gupta
,
A. R.
Magee
, and
R. K.
Jaiman
, “
Assessment of unsteady flow predictions using hybrid deep learning based reduced-order models
,”
Phys. Fluids
33
(
1
),
013601
(
2021
).
40.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci.
113
(
15
),
3932
3937
(
2016
).
41.
S.
Rudy
,
A.
Alla
,
S. L.
Brunton
, and
J. N.
Kutz
, “
Data-driven identification of parametric partial differential equations
,”
SIAM J. Appl. Dyn. Syst.
18
(
2
),
643
660
(
2019
).
42.
M.
Raissi
,
Z.
Wang
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
Deep learning of vortex-induced vibrations
,”
J. Fluid Mech.
861
,
119
137
(
2019
).
43.
K.
Champion
,
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven discovery of coordinates and governing equations
,”
Proc. Natl. Acad. Sci.
116
(
45
),
22445
22451
(
2019
).
44.
Z.
Long
,
Y.
Lu
, and
B.
Dong
, “
PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network
,”
J. Comput. Phys.
399
,
108925
(
2019
).
45.
R.
Maulik
,
A.
Mohan
,
B.
Lusch
,
S.
Madireddy
,
P.
Balaprakash
, and
D.
Livescu
, “
Time-series learning of latent-space dynamics for reduced-order model closure
,”
Physica D
405
,
132368
(
2020
).
46.
K.
Yeo
and
I.
Melnyk
, “
Deep learning algorithm for data-driven simulation of noisy dynamical system
,”
J. Comput. Phys.
376
,
1212
1231
(
2019
).
47.
S. E.
Otto
and
C. W.
Rowley
, “
Linearly recurrent autoencoder networks for learning dynamics
,”
SIAM J. Appl. Dyn. Syst.
18
(
1
),
558
593
(
2019
).
48.
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Deep learning for universal linear embeddings of nonlinear dynamics
,”
Nat. Commun.
9
(
1
),
4950
(
2018
).
49.
Z. C.
Lipton
,
J.
Berkowitz
, and
C.
Elkan
, “
A critical review of recurrent neural networks for sequence learning
,” arXiv:1506.00019 (
2015
).
50.
K.
Cho
,
B.
Van Merriënboer
,
C.
Gulcehre
,
D.
Bahdanau
,
F.
Bougares
,
H.
Schwenk
, and
Y.
Bengio
, “L
earning phrase representations using RNN encoder-decoder for statistical machine translation
,” arXiv:1406.1078 (
2014
).
51.
I.
Sutskever
,
O.
Vinyals
, and
Q. V.
Le
, “
Sequence to sequence learning with neural networks
,”
Adv. Neural Inf. Process. Syst.
27
3104
3112
(
2014
).
52.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
(
8
),
1735
1780
(
1997
).
53.
L.
Ljung
,
C.
Andersson
,
K.
Tiels
, and
T. B.
Schön
, “
Deep learning and system identification
,”
IFAC-PapersOnLine
53
(
2
),
1175
1181
(
2020
).
54.
M. M.
Bronstein
,
J.
Bruna
,
T.
Cohen
, and
P.
Veličković
, “
Geometric deep learning: Grids, groups, graphs, geodesics, and gauges
,” arXiv:2104.13478 (
2021
).
55.
N. B.
Erichson
,
M.
Muehlebach
, and
M. W.
Mahoney
, “
Physics-informed autoencoders for Lyapunov-stable fluid flow prediction
,” arXiv:1905.10866 (
2019
).
56.
A.
Chizfahm
and
R.
Jaiman
, “
Data-driven stability analysis and near-wake jet control for the vortex-induced vibration of a sphere
,”
Phys. Fluids
33
(
4
),
044104
(
2021
).
57.
C.
Cossu
and
L.
Morino
, “
On the instability of a spring-mounted circular cylinder in a viscous flow at low Reynolds numbers
,”
J. Fluids Struct.
14
(
2
),
183
196
(
2000
).
58.
P.
Meliga
and
J. M.
Chomaz
, “
An asymptotic expansion for the vortex-induced vibrations of a circular cylinder
,”
J. Fluid Mech.
671
,
137
167
(
2011
).
59.
W.
Zhang
,
X.
Li
,
Z.
Ye
, and
Y.
Jiang
, “
Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers
,”
J. Fluid Mech.
783
,
72
102
(
2015
).
60.
M. M.
Rajamuni
,
K.
Hourigan
, and
M. C.
Thompson
, “
Vortex-induced vibration of a sphere close to or piercing a free surface
,”
J. Fluid Mech.
929
,
A41
(
2021
).
61.
J.
Schoukens
,
M.
Vaes
, and
R.
Pintelon
, “
Linear system identification in a nonlinear setting: Nonparametric analysis of the nonlinear distortions and their impact on the best linear approximation
,”
IEEE Control Syst. Mag.
36
(
3
),
38
69
(
2016
).
You do not currently have access to this content.