We consider analytically velocity pair structure function of turbulent pulsations on the background of a coherent geostrophic vortex in a fast rotating fluid. The statistics of the turbulent pulsations is determined by their dynamics that is the dynamics of inertial waves affected by the differential rotation in the vortex and weak viscous damping. Our consideration is restricted by the smallest scales, where the velocity field remains smooth. We establish the anisotropy of the structure function. The velocity gradient of the turbulent pulsations achieves its largest value for the nearly radial direction and its smallest value in the nearly streamwise direction. The inclination angle between the directions of extremum values of the gradient and the vortex-associated directions is determined by the interplay between the shear rate and the viscosity influence. The scaling laws resemble their behavior for a passive scalar in a steady shear flow.

1.
U.
Frisch
and
A. N.
Kolmogorov
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
1995
).
2.
P.
Tabeling
, “
Two-dimensional turbulence: A physicist approach
,”
Phys. Rep.
362
(
1
),
1–62
(
2002
).
3.
T.
Mullin
, “
Experimental studies of transition to turbulence in a pipe
,”
Annu. Rev. Fluid Mech.
43
,
1
24
(
2011
).
4.
A.
Sekimoto
,
S.
Dong
, and
J.
Jiménez
, “
Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows
,”
Phys. Fluids
28
,
035101
(
2016
).
5.
J.
Jiménez
, “
Near-wall turbulence
,”
Phys. Fluids
25
,
101302
(
2013
).
6.
B.
Jacob
,
C. M.
Casciola
,
A.
Talamelli
, and
P. H.
Alfredsson
, “
Scaling of mixed structure functions in turbulent boundary layers
,”
Phys. fluids
20
,
045101
(
2008
).
7.
J.
Laurie
,
G.
Boffetta
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Universal profile of the vortex condensate in two-dimensional turbulence
,”
Phys. Rev. Lett.
113
,
254503
(
2014
).
8.
A.
Doludenko
,
S.
Fortova
,
I.
Kolokolov
, and
V.
Lebedev
, “
Coherent vortex in a spatially restricted two-dimensional turbulent flow in absence of bottom friction
,”
Phys. Fluids
33
,
011704
(
2021
).
9.
K.
Seshasayanan
and
A.
Alexakis
, “
Condensates in rotating turbulent flows
,”
J. Fluid Mech.
841
,
434
462
(
2018
).
10.
X. M.
de Wit
,
A. J. A.
Guzmán
,
H. J. H.
Clercx
, and,
R. P. J.
Kunnen
, “
Discontinuous transitions towards vortex condensates in buoyancy-driven rotating turbulence
,”
J. Fluid Mech.
936
,
A43
(
2022
).
11.
I.
Kolokolov
and
V.
Lebedev
, “
Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box
,”
Phys. Rev. E
93
,
033104
(
2016
).
12.
L.
Bardóczi
,
A.
Bencze
,
M.
Berta
, and
L.
Schmitz
, “
Experimental confirmation of self-regulating turbulence paradigm in two-dimensional spectral condensation
,”
Phys. Rev. E
90
,
063103
(
2014
).
13.
A.
Frishman
and
C.
Herbert
, “
Turbulence statistics in a two-dimensional vortex condensate
,”
Phys. Rev. Lett.
120
,
204505
(
2018
).
14.
I.
Kolokolov
and
V.
Lebedev
, “
Velocity statistics inside coherent vortices generated by the inverse cascade of 2-D turbulence
,”
J. Fluid Mech.
809
,
R2
(
2016
).
15.
H. P.
Greenspan
,
The Theory of Rotating Fluids
(
Cambridge University Press
,
1968
).
16.
S.
Galtier
, “
Weak inertial-wave turbulence theory
,”
Phys. Rev. E
68
,
015301
(
2003
).
17.
E.
Monsalve
,
M.
Brunet
,
B.
Gallet
, and
P.-P.
Cortet
, “
Quantitative experimental observation of weak inertial-wave turbulence
,”
Phys. Rev. Lett.
125
,
254502
(
2020
).
18.
I. V.
Kolokolov
,
L. L.
Ogorodnikov
, and
S. S.
Vergeles
, “
Structure of coherent columnar vortices in three-dimensional rotating turbulent flow
,”
Phys. Rev. Fluids
5
,
034604
(
2020
).
19.
V. M.
Parfenyev
,
I. A.
Vointsev
,
A. O.
Skoba
, and
S. S.
Vergeles
, “
Velocity profiles of cyclones and anticyclones in a rotating turbulent flow
,”
Phys. Fluids
33
,
065117
(
2021
).
20.
X.
Yang
,
Z.-H.
Xia
,
J.
Lee
,
Y.
Lv
, and
J.
Yuan
, “
Mean flow scaling in a spanwise rotating channel
,”
Phys. Rev. Fluids
5
,
074603
(
2020
).
21.
J.
Jiménez
, “
Coherent structures in wall-bounded turbulence
,”
J. Fluid Mech.
842
,
P1
(
2018
).
22.
S.
Musacchio
and
G.
Boffetta
, “
Turbulent channel without boundaries: The periodic kolmogorov flow
,”
Phys. Rev. E
89
,
023004
(
2014
).
23.
R.
Antonia
and
P.
Orlandi
, “
Effect of schmidt number on small-scale passive scalar turbulence
,”
Appl. Mech. Rev.
56
,
615
632
(
2003
).
24.
M.
Souzy
,
I.
Zaier
,
H.
Lhuissier
,
T. L.
Borgne
, and
B.
Metzger
, “
Mixing lamellae in a shear flow
,”
J. Fluid Mech.
838
,
R3
(
2018
).
25.
G.
Batchelor
and
I.
Proudman
, “
The effect of rapid distortion of a fluid in turbulent motion
,”
Q. J. Mech. Appl. Math.
7
,
83
103
(
1954
).
26.
S.
Corrsin
, “
Local isotropy in turbulent shear flow
,”
Report No. NACA-RM-58B11
(
National Advisory Committee for Aeronautics
,
1958
).
27.
W. E.
Ranz
, “
Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows
,”
AIChE J.
25
,
41
47
(
1979
).
You do not currently have access to this content.