Influences of non-uniform incoming flow on the wind turbines blades forces and root bending moments (RBMs) are not fully understood. To advance our current understanding, numerical studies of a three-bladed horizontal axis wind turbine with cylinders placed in front of it to produce non-uniform flow approaching the turbine with different non-uniformity levels have been carried out to examine the variations of blade and rotor loading due to the non-uniform incoming flow. The phase-averaged predicted blade forces reveal that the blade tangential force, in-plane RBM, and power coefficient are much more sensitive to the upstream streamwise velocity variations and are much more strongly affected than the blade axial force, out-of-plane RBM, and thrust coefficient. It also shows that for non-uniform incoming flows the blade axial force to the blade tangential force ratio fluctuates significantly during one rotor revolution, resulting in large variations of the blade elastic torsion and that the total blade force (magnitude and direction) undergoes a non-linear change in the circumferential and radial directions, which will likely lead to the reduction in the turbine operational life significantly, especially for long lightweight blades of large size wind turbines. This study also shows different behaviors of the blade forces along the blade span under non-uniform upstream flows in terms of the amplitudes and standard deviations of their oscillations. For the blade tangential force, λ and σ increase monotonously along the blade span up to near the blade tip, whereas those of the blade axial force increase up to approximately 0.6 blade span and show an opposite trend behind that.

1.
M.
Hansen
,
J.
Sørensen
,
S.
Voutsinas
,
N.
Sørensen
, and
H.
Madsen
, “
State of the art in wind turbine aerodynamics and aeroelasticity
,”
Prog. Aerospace Sci.
42
(
4
),
285
330
(
2006
).
2.
A.
Ahlstrom
, “
Influence of wind turbine flexibility on loads and power production
,”
Wind Energy
9
(
3
),
237
249
(
2006
).
3.
M. H.
Hansen
, “
Aeroelastic instability problems for wind turbines
,”
Wind Energy
10
(
6
),
551
577
(
2007
).
4.
P.
Brøndsted
,
H.
Lilholt
, and
A.
Lystrup
, “
Composite materials for wind power turbine blades
,”
Annu. Rev. Mater. Res.
35
,
505
538
(
2005
).
5.
J.
Schepers
,
K.
Boorsma
,
T.
Cho
,
S.
Gomez-Iradi
,
P.
Schaffarczyk
,
A.
Jeromin
,
W. Z.
Shen
,
T.
Lutz
,
K.
Meister
,
B.
Stoevesandt
,
S.
Schreck
,
D.
Micallef
,
R.
Pereira
,
T.
Sant
,
H.
Aagaard Madsen
, and
N. N.
Sørensen
, “
Analysis of Mexico wind tunnel measurements, Final report of IEA Task 29, Mexnext (Phase 1)
,”
Report No. ECN-E-12-004
(
ECN
,
2012
).
6.
J.
Schepers
,
K.
Boorsma
,
S.
Gomez-Iradi
,
P.
Schaffarczyk
,
H.
Madsen
,
N.
Sørensen
,
W.
Shen
,
T.
Lutz
,
C.
Schultz
,
I.
Herraez
, and
S.
Schreck
, “
Final report of IEA Wind Task 29: Mexnext (Phase 2)
,”
Report No. ECN-E-14-060
(
ECN
,
2014
).
7.
K.
Boorsma
,
J.
Schepers
,
S.
Gomez-Iradi
,
I.
Herraez
,
T.
Lutz
,
P.
Weihing
,
L.
Oggiano
,
G.
Pirrung
,
H. A.
Madsen
,
W. Z.
Shen
,
H.
Rahimi
, and
P.
Schaffarczyk
, “
Final report of IEA Wind Task 29: Mexnext (Phase 3)
,”
Report No. ECN-E-18-003
(
ECN
,
2018
).
8.
J.
Herp
,
U. V.
Poulsen
, and
M.
Greiner
, “
Wind farm power optimization including flow variability
,”
Renewable Energy
81
,
173
181
(
2015
).
9.
J.
Thé
and
H.
Yu
, “
A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods
,”
Energy
138
,
257
289
(
2017
).
10.
R.
Storey
,
J.
Cater
, and
S.
Norris
, “
Large eddy simulation of turbine loading and performance in a wind farm
,”
Renewable Energy
95
,
31
42
(
2016
).
11.
P. M. O.
Gebraad
,
F. W.
Teeuwisse
,
J. W.
van Wingerden
,
P. A.
Fleming
,
S. D.
Ruben
,
J. R.
Marden
, and
L. Y.
Pao
, “
Wind plant power optimization through yaw control using a parametric model for wake effects—A CFD simulation study
,”
Wind Energy
19
,
95
114
(
2016
).
12.
R. J. A. M.
Stevens
and
C.
Meneveau
, “
Flow Structure and Turbulence in Wind Farms
,”
Annu. Rev. Fluid Mech.
49
,
311
339
(
2017
).
13.
P.
Moriarty
and
A.
Hansen
, “
AeroDyn theory manual
,”
Report No. NREL/TP-500-36881
(
National Renewable Energy Laboratory
,
2005
).
14.
E.
Smilden
,
A.
Sørensen
, and
L.
Eliassen
, “
Wind model for simulation of thrust variations on a wind turbine
,”
Energy Procedia
94
,
306
318
(
2016
).
15.
S. G.
Horcas
,
N. N.
Sørensen
,
F.
Zahle
,
G. R.
Pirrung
, and
T.
Barlas
, “
Vibrations of wind turbine blades in standstill: Mapping the influence of the inflow angles
,”
Phys. Fluids
34
,
054105
(
2022
).
16.
L.
Gao
,
B.
Li
, and
J.
Hong
, “
Effect of wind veer on wind turbine power generation
,”
Phys. Fluids
33
,
015101
(
2021
).
17.
W.
Tian
,
A.
Ozbay
, and
H.
Hu
, “
Effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model
,”
Phys. Fluids
26
,
125108
(
2014
).
18.
M.
Bastankhah
and
F.
Porté-Agel
, “
Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region
,”
Phys. Fluids
29
,
065105
(
2017
).
19.
C.
Gebhardt
and
B.
Roccia
, “
Non-linear aeroelasticity: An approach to compute the response of three-blade large-scale horizontal-axis wind turbines
,”
Renewable Energy
66
,
495
514
(
2014
).
20.
D. O.
Yu
and
O. J.
Kwon
, “
Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method
,”
Renewable Energy
70
,
184
196
(
2014
).
21.
B.
Dose
,
H.
Rahimi
,
I.
Herráez
,
B.
Stoevesandt
, and
J.
Peinke
, “
Fluid-structure coupled computations of the NREL 5MW wind turbine by means of CFD
,”
Renewable Energy
129
,
591
605
(
2018
).
22.
H.
Meng
,
F.
Lien
, and
L.
Li
, “
Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade
,”
Renewable Energy
116
,
423
437
(
2018
).
23.
A.
Jimenez
,
A.
Crespo
,
E.
Migoya
, and
J.
Garcia
, “
Advances in large eddy simulation of a wind turbine wake
,”
J. Phys.: Conf. Ser.
75
(
1
),
012041
(
2007
).
24.
Z.
Yang
, “
Large eddy simulation: Past, present and the future
,”
Chin. J. Aeronaut.
28
,
11
24
(
2015
).
25.
M.
Calaf
,
C.
Meneveau
, and
J.
Meyers
, “
Large eddy simulation study of fully developed wind turbine array boundary layers
,”
Phys. Fluids
22
(
1
),
015110
(
2010
).
26.
J. N.
Sørensen
and
C. W.
Kock
, “
A model for unsteady rotor aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
58
(
3
),
259
275
(
1995
).
27.
C.
Masson
,
A.
Smaili
, and
C.
Leclerc
, “
Aerodynamic analysis of HAWTs operating in unsteady conditions
,”
Wind Energy
4
(
1
),
1
22
(
2001
).
28.
N.
Troldborg
, “
Actuator line modelling of wind turbine wakes
,” Ph.D. thesis (
Technical University of Denmark
,
Denmark
,
2008
).
29.
R. J. A. M.
Stevens
,
L. A.
Martínez-Tossas
, and
C.
Meneveau
, “
Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments
,”
Renewable Energy
116
,
470
478
(
2018
).
30.
M. H. B.
Ahmadi
and
P.
Dong
, “
Validation of the actuator line method for simulating flow through a horizontal axis tidal stream turbine by comparison with measurements
,”
Renewable Energy
113
,
420
427
(
2017
).
31.
M. H. B.
Ahmadi
and
P.
Dong
, “
Numerical simulations of wake characteristics of a horizontal axis tidal stream turbine using actuator line model
,”
Renewable Energy
113
,
669
678
(
2017
).
32.
M. H. B.
Ahmadi
and
Z.
Yang
, “
Numerical study of the coupling between the instantaneous blade loading/power of an axial wind turbine and upstream turbulence at high Reynolds numbers
,”
Energy
207
,
118167
(
2020
).
33.
S.
Menon
,
P. K.
Yeung
, and
W. W.
Kim
, “
Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence
,”
Comput. Fluids
25
,
165
180
(
1996
).
34.
See http://openfoam.org for “OpenFOAM,
Released via the OpenFOAM Foundation
.”
35.
J. N.
Sørensen
and
W. Z.
Shen
, “
Numerical modelling of wind turbine wakes
,”
J. Fluids Eng.
124
,
393
399
(
2002
).
36.
K.
Boorsma
and
J. G.
Schepers
, “
Description of experimental setup, MEXICO measurements
,”
Report No. ECN-X-09-0XX
(
ECN
,
2009
).
37.
W. Z.
Shen
,
W. J.
Zhu
, and
J. N.
Sørensen
, “
Actuator line/Navier-Stokes computations for the MEXICO rotor: Comparison with detailed measurements
,”
Wind Energy
15
(
5
),
811
825
(
2012
).
38.
J.
Schepers
and
H.
Snel
, “
Mexico, model experiments in controlled conditions
,”
Report No. ECNE-07-042
(
Energy Research Center of the Netherlands
,
2007
).
39.
K.
Nilsson
,
W. Z.
Shen
,
J. N.
Sørensen
,
S. P.
Breton
, and
S.
Ivanell
, “
Validation of the actuator line method using near wake measurements of the MEXICO rotor
,”
Wind Energy
18
(
3
),
499
514
(
2015
).
40.
A.
Chaudhari
, “
Large eddy simulation of wind flows over complex terrains for wind energy applications
,” PhD thesis (
Lappeenranta University of Technology
,
Finland
,
2014
).
41.
M. H. B.
Ahmadi
and
Z.
Yang
, “
Large eddy simulation of the flow past a circular cylinder at super-critical Reynolds number
,” in
Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference & Exposition
, 21–25 September,
2020
, Paper No: GT2020-15393.
42.
M. H. B.
Ahmadi
and
Z.
Yang
, “
On loading fluctuations induced by energetic large-scale motions for horizontal axis wind turbines
,”
Phys. Fluids
34
,
075107
(
2022
).
You do not currently have access to this content.