In the present work, the stability of a viscoelastic fluid flow is studied by linear stability theory, and some results are verified by direct numerical simulation. The investigation considers the fluid flow between two parallel plates, modeled by the Giesekus constitutive equation. The results show the influence of the anisotropic tensorial correction parameter αG on this model, showing a stabilizing influence for two-dimensional disturbances for small values of αG. However, as αG increases, a reduction in the critical Reynolds number values is observed, possibly hastening the transition to turbulence. Low values for αG for three-dimensional disturbances cause more significant variations for the critical Reynolds number. This variation decreases as the value of this parameter increases. The results also show that low values of αG increase the instability of three-dimensional disturbances and confirm that Squire's theorem is not valid for this model. As for the two-dimensional disturbances, the anisotropic term on the Giesekus model lowers the critical Reynolds number for higher quantities of polymer viscosity in the mixture and high values for the Weissenberg number.

1.
A.
Beris
,
R.
Armostrong
, and
R.
Brown
, “
Spectral finite-element calculations of the flow of a Maxwell fluid between eccentric rotating cylinders
,”
J. Non-Newtonian Fluid Mech.
22
,
129
167
(
1987
).
2.
G.
Mompean
and
M.
Deville
, “
Unsteady finite volume of Oldroyd-B fluid through a three-dimensional planar contraction
,”
J. Non-Newtonian Fluid Mech.
72
,
253
279
(
1997
).
3.
E.
Brasseur
,
M.
Fyrillas
,
G.
Georgioou
, and
M.
Crochet
, “
The time-dependent extrudate-swell problem of an Oldroyd-B fluid with slip along the wall
,”
J. Rheol.
42
,
549
566
(
1998
).
4.
T. N.
Phillips
and
A.
Williams
, “
Comparison of creeping and inertial flow of an Oldroyd-B fluid though a planar and axisymmetric contraction
,”
J. Non-Newtonian Fluid Mech.
108
,
25
47
(
2002
).
5.
F. T.
Pinho
,
M. A.
Alves
, and
P. J.
Oliveira
, “
Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions
,”
J. Non-Newtonian Fluid Mech.
110
,
45
75
(
2003
).
6.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
(
John Willey & Sons
,
1987
).
7.
H.
Giesekus
, “
Elasto-viskose flüssigkeiten, für die in stationären schichtströmungen sämtliche normalspannungskomponenten verschieden gross sind
,”
Rheol. Acta
2
,
50
62
(
1962
).
8.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
9.
H.
Giesekus
, “
Constitutive equations for polymer fluids based on the concept of configuration-dependent molecular mobility: A generalized mean-configuration model
,”
J. Non-Newtonian Fluid Mech.
17
,
349
372
(
1985
).
10.
A. A.
Draad
,
G. D. C.
Kuiken
, and
F. T. M.
Nieuwstadt
, “
Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids
,”
J. Fluid Mech.
377
,
267
312
(
1998
).
11.
A.
Ram
and
A.
Tamir
, “
Structural turbulence in polymer solutions
,”
J. Appl. Polym. Sci.
8
,
2751
2762
(
1964
).
12.
D.
Samanta
,
Y.
Dubief
,
M.
Holzner
,
C.
Schäfer
,
A. N.
Morozov
,
C.
Wagner
, and
B.
Hof
, “
Elasto-inertial turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10557
10562
(
2013
).
13.
H. A.
Castillo
and
H. J.
Wilson
, “
Towards a mechanism for instability in channel flow of highly shear-thinning viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
247
,
15
21
(
2017
).
14.
K.-C.
Lee
and
B. A.
Finlayson
, “
Stability of plane Poiseuille and Couette flow of a Maxwell fluid
,”
J. Non-Newtonian Fluid Mech.
21
,
65
78
(
1986
).
15.
F.
Lim
and
W.
Schowalter
, “
Pseudo-spectral analysis of the stability of pressure-driven flow of a giesekus fluid between parallel planes
,”
J. Non-Newtonian Fluid Mech.
26
,
135
142
(
1987
).
16.
R. G.
Larson
,
E. S. G.
Shaqfeh
, and
S. J.
Muller
, “
A purely elastic instability in Taylor–Couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
17.
E. S. G.
Shaqfeh
,
S. J.
Muller
, and
R. G.
Larson
, “
The effects of gap width and dilute solution properties on the viscoelastic Taylor–Couette instability
,”
J. Fluid Mech.
235
,
285
317
(
1992
).
18.
Y. L.
Joo
and
E. S. G.
Shaqfeh
, “
A purely elastic instability in dean and Taylor–Dean flow
,”
Phys. Fluids A: Fluid Dyn.
4
,
524
543
(
1992
).
19.
R. G.
Larson
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
,
213
263
(
1992
).
20.
R.
Sureshkumar
and
A. N.
Beris
, “
Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm
,”
J. Non-Newtonian Fluid Mech.
56
,
151
182
(
1995
).
21.
M.
Avgousti
and
A. N.
Beris
, “
Non-axisymmetric modes in viscoelastic Taylor–Couette flow
,”
J. Non-Newtonian Fluid Mech.
50
,
225
251
(
1993
).
22.
L.
Blonce
, “
Linear stability of Giesekus fluid in Poiseuille flow
,”
Mech. Res. Commun.
24
,
223
228
(
1997
).
23.
J.
Mak
, “
Hydrodynamic stability of Newtonian and Non-Newtonian fluids
,” Ph.D. thesis (
University of Durham
,
2009
).
24.
M.
Zhang
,
I.
Lashgari
,
T. A.
Zaki
, and
L.
Brandt
, “
Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids
,”
J. Fluid Mech.
737
,
249
279
(
2013
).
25.
H. Y.
Ye
,
L. J.
Yang
, and
Q. F.
Fu
, “
Instability of viscoelastic compound jets
,”
Phys. Fluids
28
,
043101
(
2016
).
26.
A. C.
Brandi
,
M. T.
Mendonça
, and
L. F.
Souza
, “
DNS and LST stability analysis of Oldroyd-B fluid in a flow between two parallel plates
,”
J. Non-Newtonian Fluid Mech.
267
,
14
27
(
2019
).
27.
L. J.
da Silva Furlan
,
M. T.
de Mendonca
,
M. T.
de Araujo
, and
L. F.
de Souza
, “
On the validity of Squire's theorem for viscoelastic fluid flows
,”
J. Non-Newtonian Fluid Mech.
307
,
104880
(
2022
).
28.
M. T.
Araujo
, “
Estudo de escoamentos transicionais tridimensionais de fluidos viscoelásticos modelados por giesekus
,” Ph.D. thesis (
Universidade de São Paulo
,
2021
).
29.
F.
Lockett
, “
On Squire's theorem for viscoelastic fluids
,”
Int. J. Eng. Sci.
7
,
337
349
(
1969
).
30.
A. M.
Grillet
,
A. C.
Bogaerds
,
G. W.
Peters
, and
F. P.
Baaijens
, “
Stability analysis of constitutive equations for polymer melts in viscometric flows
,”
J. Non-Newtonian Fluid Mech.
103
,
221
250
(
2002
).
31.
L. J.
da Silva Furlan
,
M. T.
de Araujo
,
A. C.
Brandi
,
D. O.
de Almeida Cruz
, and
L. F.
de Souza
, “
Different formulations to solve the Giesekus model for flow between two parallel plates
,”
Appl. Sci.
11
,
10115
(
2021
).
32.
H. A.
Castillo Sánchez
,
M. R.
Jovanović
,
S.
Kumar
,
A.
Morozov
,
V.
Shankar
,
G.
Subramanian
, and
H. J.
Wilson
, “
Understanding viscoelastic flow instabilities: Oldroyd-B and beyond
,”
J. Non-Newtonian Fluid Mech.
302
,
104742
(
2022
).
33.
W. S.
Don
and
A.
Solomonoff
, “
Accuracy and speed in computing the Chebyshev collocation derivative
,”
SIAM J. Sci. Comput.
16
,
1253
1268
(
1995
).
34.
J. A.
Weideman
and
S. C.
Reddy
, “
A MATLAB differentiation matrix suite
,”
ACM Trans. Math. Software
26
,
465
519
(
2000
).
You do not currently have access to this content.