Barchans are crescent-shaped dunes commonly found in diverse environments and scales: from the 10-cm-long barchans found under water to the 1-km-long barchans on Mars, passing by the 100-m-long dunes on Earth's deserts. Although ubiquitous in nature, there is a lack of grain-scale computations of the growth and evolution of those bedforms. In this paper, we investigate the values of grain properties (coefficients of sliding friction, rolling friction, and restitution) necessary to carry out numerical simulations of subaqueous barchans with CFD–DEM (computational fluid dynamics–discrete element method), and how the values of those coefficients change the barchan dynamics. We made use of LES (large eddy simulation) for the fluid, varied the coefficients of sliding friction, rolling friction, and restitution in the DEM, and compared the outputs with experiments. We show (i) for the case of glass spheres, the values of coefficients for correctly obtaining the dune morphology, timescales, trajectories of individual grains, and forces experienced by grains; (ii) the LES meshes allowing computations of bedload while capturing the main disturbances of the fluid flow; (iii) how different values of coefficients affect the morphology of barchans; and (iv) that spheres with higher coefficients of rolling friction can be used for simulating barchans consisting of angular grains. Our results represent a significant step for performing simulations that capture, at the same time, details of the fluid flow (large eddies) and grains' motion (individual particles).

1.
R. A.
Bagnold
,
The Physics of Blown Sand and Desert Dunes
(
Chapman and Hall
,
London
,
1941
).
2.
B.
Andreotti
,
P.
Claudin
, and
S.
Douady
, “
Selection of dune shapes and velocities. Part 1: Dynamics of sand, wind and barchans
,”
Eur. Phys. J. B
28
,
321
329
(
2002
).
3.
F.
Charru
,
B.
Andreotti
, and
P.
Claudin
, “
Sand ripples and dunes
,”
Ann. Rev. Fluid Mech.
45
,
469
493
(
2013
).
4.
S.
Courrech du Pont
, “
Dune morphodynamics
,”
C. R. Phys.
16
,
118
138
(
2015
).
5.
P.
Hersen
,
S.
Douady
, and
B.
Andreotti
, “
Relevant length scale of barchan dunes
,”
Phys. Rev. Lett.
89
,
264301
(
2002
).
6.
P.
Claudin
and
B.
Andreotti
, “
A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples
,”
Earth Planet. Sci. Lett.
252
,
30
44
(
2006
).
7.
E. J. R.
Parteli
and
H. J.
Herrmann
, “
Dune formation on the present mars
,”
Phys. Rev. E
76
,
041307
(
2007
).
8.
N.
Endo
,
H.
Kubo
, and
T.
Sunamura
, “
Barchan-shaped ripple marks in a wave flume
,”
Earth Surf. Processes Landforms
29
,
31
42
(
2004
).
9.
E. M.
Franklin
and
F.
Charru
, “
Subaqueous barchan dunes in turbulent shear flow. Part 1. Dune motion
,”
J. Fluid Mech.
675
,
199
222
(
2011
).
10.
N.
Hori
,
A.
Yamada
,
Y.
Oshiro
, and
O.
Sano
, “
Formation of barchans and ripples due to steady viscous flow in an annular channel
,”
J. Phys. Soc. Jpn.
76
,
024401
(
2007
).
11.
E.
Reffet
,
S.
Courrech du Pont
,
P.
Hersen
, and
S.
Douady
, “
Formation and stability of transverse and longitudinal sand dunes
,”
Geology
38
,
491
494
(
2010
).
12.
C. A.
Alvarez
and
E. M.
Franklin
, “
Birth of a subaqueous barchan dune
,”
Phys. Rev. E
96
,
062906
(
2017
).
13.
C. A.
Alvarez
and
E. M.
Franklin
, “
Role of transverse displacements in the formation of subaqueous barchan dunes
,”
Phys. Rev. Lett.
121
,
164503
(
2018
).
14.
J. L.
Wenzel
and
E. M.
Franklin
, “
Velocity fields and particle trajectories for bed load over subaqueous barchan dunes
,”
Granular Matter
21
,
75
(
2019
).
15.
C. A.
Alvarez
and
E. M.
Franklin
, “
Horns of subaqueous barchan dunes: A study at the grain scale
,”
Phys. Rev. E
100
,
042904
(
2019
).
16.
C. A.
Alvarez
,
F. D.
Cúñez
, and
E. M.
Franklin
, “
Growth of barchan dunes of bidispersed granular mixtures
,”
Phys. Fluids
33
,
051705
(
2021
).
17.
C. A.
Alvarez
and
E. M.
Franklin
, “
Shape evolution of numerically obtained subaqueous barchan dunes
,”
Phys. Rev. E
101
,
012905
(
2020
).
18.
C. A.
Alvarez
and
E. M.
Franklin
, “
Force distribution within a barchan dune
,”
Phys. Fluids
33
,
013313
(
2021
).
19.
W. R.
Assis
and
E. M.
Franklin
, “
Morphodynamics of barchan-barchan interactions investigated at the grain scale
,”
J. Geophys. Res.: Earth Surf.
126
,
e2021JF006237
, https://doi.org/10.1029/2021JF006237 (
2021
).
20.
W. R.
Assis
,
F. D.
Cúñez
, and
E. M.
Franklin
, “
Revealing the intricate dune-dune interactions of bidisperse barchans
,”
J. Geophys. Res.: Earth Surf.
127
,
e2021JF006588
, https://doi.org/10.1029/2021JF006588 (
2022
).
21.
G.
Sauermann
,
K.
Kroy
, and
H. J.
Herrmann
, “
Continuum saltation model for sand dunes
,”
Phys. Rev. E
64
,
031305
(
2001
).
22.
H. J.
Herrmann
and
G.
Sauermann
, “
The shape of dunes
,”
Physica A
283
,
24
30
(
2000
).
23.
K.
Kroy
,
G.
Sauermann
, and
H. J.
Herrmann
, “
Minimal model for aeolian sand dunes
,”
Phys. Rev. E
66
,
031302
(
2002
).
24.
K.
Kroy
,
G.
Sauermann
, and
H. J.
Herrmann
, “
Minimal model for sand dunes
,”
Phys. Rev. Lett.
88
,
054301
(
2002
).
25.
K.
Kroy
,
S.
Fischer
, and
B.
Obermayer
, “
The shape of barchan dunes
,”
J. Phys.: Condens. Matter
17
,
S1229
0S1235
(
2005
).
26.
V.
Schwämmle
and
H. J.
Herrmann
, “
A model of barchan dunes including lateral shear stress
,”
Eur. Phys. J. E
16
,
57
65
(
2005
).
27.
E. J. R.
Parteli
,
O.
Durán
,
M. C.
Bourke
,
H.
Tsoar
,
T.
Pöschel
, and
H.
Herrmann
, “
Origins of barchan dune asymmetry: Insights from numerical simulations
,”
Aeolian Res.
12
,
121
133
(
2014
).
28.
P. S.
Jackson
and
J. C. R.
Hunt
, “
Turbulent wind flow over a low hill
,”
Q. J. R. Meteorol. Soc.
101
,
929
955
(
1975
).
29.
J. C. R.
Hunt
,
S.
Leibovich
, and
K. J.
Richards
, “
Turbulent shear flows over low hills
,”
Q. J. R. Meteorol. Soc.
114
,
1435
1470
(
1988
).
30.
W. S.
Weng
,
J. C. R.
Hunt
,
D. J.
Carruthers
,
A.
Warren
,
G. F. S.
Wiggs
,
I.
Livingstone
, and
I.
Castro
, “
Air flow and sand transport over sand-dunes
,”
Acta Mech.
2
,
1
21
(
1991
).
31.
F.
Sotiropoulos
and
A.
Khosronejad
, “
Sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics
,”
Phys. Fluids
28
,
021301
(
2016
).
32.
A.
Khosronejad
and
F.
Sotiropoulos
, “
On the genesis and evolution of barchan dunes: Morphodynamics
,”
J. Fluid Mech.
815
,
117
148
(
2017
).
33.
A.
Khosronejad
,
S.
Kang
,
A.
Farhadzadeh
, and
F.
Sotiropoulos
, “
On the genesis and evolution of barchan dunes: Hydrodynamics
,”
Phys. Fluids
32
,
086602
(
2020
).
34.
C.
Narteau
,
D.
Zhang
,
O.
Rozier
, and
P.
Claudin
, “
Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms
,”
J. Geophys. Res.: Earth Surf.
114
,
F03006
, https://doi.org/10.1029/2008JF001127 (
2009
).
35.
D.
Zhang
,
X.
Yang
,
O.
Rozier
, and
C.
Narteau
, “
Mean sediment residence time in barchan dunes
,”
J. Geophys. Res.: Earth Surf.
119
,
451
463
, http://dx.doi.org/10.1002/2013JF002833 (
2014
).
36.
C.
Goniva
,
C.
Kloss
,
N. G.
Deen
,
J. A. M.
Kuipers
, and
S.
Pirker
, “
Influence of rolling friction on single spout fluidized bed simulation
,”
Particuology
10
,
582
591
(
2012
).
37.
C.
Kloss
and
C.
Goniva
, “
LIGGGHTS: A new open source discrete element simulation software
,” in
5th International Conference on Discrete Element Methods
,
London, UK
,
2010
.
38.
R.
Berger
,
C.
Kloss
,
A.
Kohlmeyer
, and
S.
Pirker
, “
Hybrid parallelization of the LIGGGHTS open-source DEM code
,”
Powder Technol.
278
,
234
247
(
2015
).
39.
Z. Y.
Zhou
,
S. B.
Kuang
,
K. W.
Chu
, and
A. B.
Yu
, “
Discrete particle simulation of particle–fluid flow: Model formulations and their applicability
,”
J. Fluid Mech.
661
,
482
510
(
2010
).
40.
Y.
Tsuji
,
T.
Tanaka
, and
T.
Ishida
, “
Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe
,”
Powder Technol.
71
,
239
250
(
1992
).
41.
Y.
Tsuji
,
T.
Kawaguchi
, and
T.
Tanaka
, “
Discrete particle simulation of two-dimensional fluidized bed
,”
Powder Technol.
77
,
79
87
(
1993
).
42.
D.
Liu
,
X.
Liu
,
X.
Fu
, and
G.
Wang
, “
Quantification of the bed load effects on turbulent open-channel flows
,”
J. Geophys. Res.: Earth Surf.
121
,
767
789
, https://doi.org/10.1002/2015JF003723 (
2016
).
43.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensors
,”
Flow, Turbul. Combust.
62
,
183
200
(
1999
).
44.
S.
Pirker
,
D.
Kahrimanovic
, and
C.
Goniva
, “
Improving the applicability of discrete phase simulations by smoothening their exchange fields
,”
Appl. Math. Modell.
35
,
2479
2488
(
2011
).
45.
J.
Marshall
and
K.
Sala
, “
Comparison of methods for computing the concentration field of a particulate flow
,”
Int. J. Multiphase Flow
56
,
4
14
(
2013
).
46.
C.
Kloss
,
C.
Goniva
,
A.
Hager
,
S.
Amberger
, and
S.
Pirker
, “
Models, algorithms and validation for opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dyn.
12
,
140
152
(
2012
).
47.
B.
Blais
,
M.
Lassaigne
,
C.
Goniva
,
L.
Fradette
, and
F.
Bertrand
, “
Development of an unresolved CFD–DEM model for the flow of viscous suspensions and its application to solid–liquid mixing
,”
J. Comput. Phys.
318
,
201
221
(
2016
).
48.
B.
Delacroix
,
J.
Rastoueix
,
L.
Fradette
,
F.
Bertrand
, and
B.
Blais
, “
CFD-DEM simulations of solid-liquid flow in stirred tanks using a non-inertial frame of reference
,”
Chem. Eng. Sci.
230
,
116137
(
2021
).
49.
S. M.
Derakhshani
,
D. L.
Schott
, and
G.
Lodewijks
, “
Micro–macro properties of quartz sand: Experimental investigation and DEM simulation
,”
Powder Technol.
269
,
127
138
(
2015
).
50.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial difference equations of mathematical physics
,”
IBM J. Res. Dev.
11
,
215
234
(
1967
).
51.
N. C.
Lima
,
W. R.
Assis
,
C. A.
Alvarez
, and
E. M.
Franklin
(
2022
).“
LES-DEM computations of barchan dunes
,”
Mendeley Data
. https://data.mendeley.com/datasets/zhnngnvvz8
52.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
53.
F.
Charru
and
E. M.
Franklin
, “
Subaqueous barchan dunes in turbulent shear flow. Part 2: Fluid flow
,”
J. Fluid Mech.
694
,
131
154
(
2012
).
54.
M. W.
Schmeeckle
, “
Numerical simulation of turbulence and sediment transport of medium sand
,”
J. Geophys. Res.: Earth Surf.
119
,
1240
1262
, https://doi.org/10.1002/2013JF002911 (
2014
).
55.
R.
Maurin
,
J.
Chauchat
,
B.
Chareyre
, and
P.
Frey
, “
A minimal coupled fluid-discrete element model for bedload transport
,”
Phys. Fluids
27
,
113302
(
2015
).
56.
T.
Pähtz
and
O.
Durán
, “
Fluid forces or impacts: What governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?
,”
Phys. Rev. Fluids
2
,
074303
(
2017
).
57.
A. G.
Kidanemariam
and
M.
Uhlmann
, “
Direct numerical simulation of pattern formation in subaqueous sediment
,”
J. Fluid Mech.
750
,
R2
(
2014
).
58.
A. G.
Kidanemariam
and
M.
Uhlmann
, “
Formation of sediment patterns in channel flow: Minimal unstable systems and their temporal evolution
,”
J. Fluid Mech.
818
,
716
743
(
2017
).
59.
D.
Gidaspow
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
(
Academic Press
,
1994
).

Supplementary Material

You do not currently have access to this content.