Particle-resolved direct numerical simulation (PR-DNS) of flow past a particle cluster is conducted to analyze the influence of heterogeneous particle distribution on the gas–solid heat transfer calculation. Then, the heat transfer rates calculated using Gunn's correlation are systematically compared with the DNS results for virtual computational fluid dynamics-discrete element method (CFD-DEM) grids with different levels of heterogeneity. The results show that, for a grid located at the interface between the dense cluster region and dilute region, Gunn's correlation significantly overestimates the heat transfer rate, especially at small Reynolds numbers. This is caused by the large temperature difference between the dense and dilute regions in the heterogeneous CFD-DEM grid. The value calculated by Gunn's correlation can be up to ten times the DNS result. For a homogeneous grid inside a dense region, the conventional Nusselt correlation fails to capture the rapid increase in the fluid temperature gradient around the near-interface particles when the grid approaches the cluster–fluid interface. Furthermore, even if the size of the CFD-DEM grid is reduced to twice the particle diameter, the heterogeneous particle distribution still leads to a remarkable error in the heat transfer calculation. Finally, modifications to Gunn's correlation are proposed for three typical cross-interface cases, which can well reflect the influence of the heterogeneous distribution of particles and yield a heat transfer rate close to the PR-DNS results. The mean relative deviations of the three fitted correlations are 5.8%, 14.3%, and 22.4%, respectively.

1.
Agrawal
,
K.
,
Holloway
,
W.
,
Milioli
,
C. C.
,
Milioli
,
F. E.
, and
Sundaresan
,
S.
, “
Filtered models for scalar transport in gas-particle flows
,”
Chem. Eng. Sci.
95
,
291
300
(
2013
).
2.
Agrawal
,
K.
,
Loezos
,
P. N.
,
Syamlal
,
M.
, and
Sundaresan
,
S.
, “
The role of meso-scale structures in rapid gas–solids flows
,”
J. Fluid Mech.
445
,
151
(
2001
).
3.
Agarwal
,
P. K.
, “
Transport phenomena in multi-particle systems. II. Particle-fluid heat and mass transfer
,”
Chem. Eng. Sci.
43
,
2501
2510
(
1988
).
4.
Alobaid
,
F.
,
Almohammed
,
N.
,
Farid
,
M. M.
,
May
,
J.
,
Rößger
,
P.
,
Richter
,
A.
, and
Epple
,
B.
, “
Progress in CFD simulations of fluidized beds for chemical and energy process engineering
,”
Prog. Energy Combust. Sci.
91
,
100930
(
2022
).
5.
Ayeni
,
Q.
,
Tiwari
,
S. S.
,
Wu
,
C. L.
,
Joshi
,
J. B.
, and
Nandakumar
,
K.
, “
Behavior of particle swarms at low and moderate Reynolds numbers using computational fluid dynamics—Discrete element model
,”
Phys. Fluids
32
,
073304
(
2020
).
6.
Boyce
,
C. M.
,
Holland
,
D. J.
,
Scott
,
S. A.
, and
Dennis
,
J. S.
, “
Limitations on fluid grid sizing for using volume-averaged fluid equations in discrete element models of fluidized beds
,”
Ind. Eng. Chem. Res.
54
(
43
),
10684
10697
(
2015
).
7.
Cahyadi
,
A.
,
Anantharaman
,
A.
,
Yang
,
S. L.
,
Karri
,
S. B. R.
,
Findlay
,
J. G.
,
Cocco
,
R. A.
, and
Chew
,
J. W.
, “
Review of cluster characteristics in circulating fluidized bed (CFB) risers
,”
Chem. Eng. Sci.
158
,
70
95
(
2017
).
8.
Chen
,
S.
,
Chen
,
P. Z.
, and
Fu
,
J. H.
, “
Drag and lift forces acting on linear and irregular agglomerates formed by spherical particles
,”
Phys. Fluids
34
,
023307
(
2022
).
9.
Chen
,
S.
,
Li
,
S. Q.
, and
Marshall
,
J. S.
, “
Exponential scaling in early-stage agglomeration of adhesive particles in turbulence
,”
Phys. Rev. Fluids
4
,
024304
(
2019
).
10.
Chen
,
X.
,
Song
,
N.
,
Jiang
,
M.
,
Ma
,
T.
, and
Zhou
,
Q.
, “
A microscopic gas-solid drag model considering the effect of interface between dilute and dense phases
,”
Int. J. Multiphase Flow
128
,
103266
(
2020
).
11.
Dong
,
W. G.
,
Wang
,
W.
, and
Li
,
J. H.
, “
A multiscale mass transfer model for gas-solid riser flows. I. Sub-grid model and simple tests
,”
Chem. Eng. Sci.
63
(
10
),
2798
2810
(
2008
).
12.
Esteghamatian
,
A.
,
Hammouti
,
A.
,
Lance
,
M.
, and
Wachs
,
A.
, “
Particle resolved simulations of liquid/solid and gas/solid fluidized beds
,”
Phys. Fluids
29
,
033302
(
2017
).
13.
Fang
,
W.
,
Chen
,
S.
,
Xu
,
J.
, and
Zeng
,
K.
, “
Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power
,”
Energy
217
,
119389
(
2021
).
14.
Fu
,
J. H.
,
Chen
,
S.
,
Chen
,
P. Z.
, and
Wen
,
C.
, “
Particle-resolved simulation on viscous flow past random and ordered arrays of hot ellipsoidal particles
,”
Int. J. Multiphase Flow
142
,
103736
(
2021
).
15.
Fu
,
J. H.
,
Jiang
,
K. J.
,
Chen
,
S.
, and
Du
,
X. Z.
, “
Effect of large temperature difference on drag coefficient and Nusselt number of an ellipsoidal particle in compressible viscous flow
,”
Powder Technol.
408
,
117766
(
2022
).
16.
Fullmer
,
W. D.
, and
Hrenya
,
C. M.
, “
Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization
,”
AIChE J.
62
(
1
),
11
17
(
2016
).
17.
Fullmer
,
W. D.
, and
Hrenya
,
C. M.
, “
The clustering instability in rapid granular and gas-solid flows
,”
Annu. Rev. Fluid Mech.
49
,
485
510
(
2017
).
18.
Golshan
,
S.
,
Gharebagh
,
R. S.
,
Zarghami
,
R.
,
Mostoufi
,
N.
,
Blais
,
B.
, and
Kuipers
,
J. A. M.
, “
Review and implementation of CFD-DEM applied to chemical process systems
,”
Chem. Eng. Sci.
221
,
115646
(
2020
).
19.
Gunn
,
D. J.
, “
Transfer of heat or mass to particles in fixed and fluidised beds
,”
Int. J. Heat Mass Transfer
21
,
467
476
(
1978
).
20.
Guo
,
L.
, and
Capecelatro
,
J.
, “
The role of clusters on heat transfer in sedimenting gas-solid flows
,”
Int. J. Heat Mass Transfer
132
,
1217
1230
(
2019
).
21.
Hashemi
,
Z.
,
Abouali
,
O.
, and
Kamali
,
R.
, “
Three dimensional thermal lattice Boltzmann simulation of heating/cooling spheres falling in a Newtonian liquid
,”
Int. J. Therm. Sci.
82
,
23
33
(
2014
).
22.
He
,
L.
, and
Tafti
,
D. K.
, “
Heat transfer in an assembly of ellipsoidal particles at low to moderate Reynolds numbers
,”
Int. J. Heat Mass Transfer
114
,
324
336
(
2017
).
23.
He
,
M. M.
,
Zhao
,
B. D.
,
Xu
,
J.
,
Kong
,
L. K.
, and
Wang
,
J. W.
, “
Assessment of kinetic theory for gas-solid flows using discrete particle method
,”
Phys. Fluids
34
,
093315
(
2022
).
24.
Hong
,
K.
,
Shi
,
Z. S.
,
Wang
,
W.
, and
Li
,
J. H.
, “
A structure-dependent multi-fluid model (SFM) for heterogeneous gas–solid flow
,”
Chem. Eng. Sci.
99
,
191
202
(
2013
).
25.
Hong
,
K.
,
Wang
,
W.
,
Zhou
,
Q.
,
Wang
,
J. W.
, and
Li
,
J. H.
, “
An EMMS-based multi-fluid model (EFM) for heterogeneous gas–solid riser flows. I. Formulation of structure-dependent conservation equations
,”
Chem. Eng. Sci.
75
,
376
389
(
2012
).
26.
Huang
,
Z. Q.
,
Zhang
,
C.
,
Jiang
,
M.
, and
Zhou
,
Q.
, “
Development of a filtered interphase heat transfer model based on fine-grid simulations of gas–solid flows
,”
AIChE J.
66
,
e16755
(
2020
).
27.
Jiang
,
K. J.
,
Du
,
X. Z.
,
Kong
,
Y. Q.
,
Xu
,
C.
, and
Ju
,
X.
, “
A comprehensive review on solid particle receivers of concentrated solar power
,”
Renewable Sustainable Energy Rev.
116
,
109463
(
2019
).
28.
Jiang
,
K. J.
,
Du
,
X. Z.
,
Zhang
,
Q.
,
Kong
,
Y. Q.
,
Xu
,
C.
, and
Ju
,
X.
, “
Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies
,”
Renewable Sustainable Energy Rev.
150
,
111479
(
2021
).
29.
Jin
,
H.
,
Wang
,
Y. D.
,
Wang
,
H. B.
,
Wu
,
Z. Q.
, and
Li
,
X. Y.
, “
Influence of Stefan flow on the drag coefficient and heat transfer of a spherical particle in a supercritical water cross flow
,”
Phys. Fluids
33
,
023313
(
2021
).
30.
Koe
,
J. K. T.
, and
Lim
,
E. W. C.
, “
Effects of an immersed tube in deep and shallow slugging fluidized beds
,”
Phys. Fluids
33
,
013306
(
2021
).
31.
Kuang
,
S. B.
,
Zhou
,
M. M.
, and
Yu
,
A. B.
, “
CFD-DEM modelling and simulation of pneumatic conveying: A review
,”
Powder Technol.
365
,
186
207
(
2020
).
32.
Lei
,
H.
,
Zhu
,
L. T.
, and
Luo
,
Z. H.
, “
Study of filtered interphase heat transfer using highly resolved CFD–DEM simulations
,”
AIChE J.
67
(
4
),
e17121
(
2020
).
33.
Li
,
D.
,
Wang
,
S. Y.
,
Liu
,
G. D.
,
Lu
,
H. L.
,
Jiang
,
X. X.
,
Ming
,
T.
, and
Li
,
Z. J.
, “
A dynamic cluster structure-dependent drag coefficient model applied to gas-solid risers
,”
Powder Technol.
325
,
381
395
(
2018
).
34.
Li
,
J. H.
, and
Kwauk
,
M.
,
Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Model
(
Metallurgy Industry Press
,
Beijing
,
1994
).
35.
Li
,
J. H.
, and
Kwauk
,
M.
, “
Multiscale nature of complex fluid-particle systems
,”
Ind. Eng. Chem. Res.
40
,
4227
4237
(
2001
).
36.
Liu
,
W. W.
, and
Wu
,
C. Y.
, “
Lateral migration of a neutrally buoyant particle in Couette flow with thermal convection
,”
Int. J. Multiphase Flow
138
,
103612
(
2021
).
37.
Lu
,
B. N.
,
Niu
,
Y.
,
Chen
,
F. G.
,
Ahmad
,
N.
,
Wang
,
W.
, and
Li
,
J. H.
, “
Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors
,”
Rev. Chem. Eng.
35
,
879
915
(
2019
).
38.
Lu
,
B. N.
,
Wang
,
W.
, and
Li
,
J. H.
, “
Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows
,”
Chem. Eng. Sci.
64
,
3437
3447
(
2009
).
39.
Lu
,
J. T.
,
Peters
,
E. A. J. F.
, and
Kuipers
,
J. A. M.
, “
Direct numerical simulation of fluid flow and mass transfer in particle clusters
,”
Ind. Eng. Chem. Res.
57
,
4664
4679
(
2018
).
40.
Lu
,
L. Q.
,
Morris
,
A.
,
Li
,
T. W.
, and
Benyahia
,
S.
, “
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
,”
Int. J. Heat Mass Transfer
111
,
723
735
(
2017
).
41.
Lu
,
L. Q.
,
Xu
,
J.
,
Ge
,
W.
,
Yue
,
Y. P.
,
Liu
,
X. H.
, and
Li
,
J. H.
, “
EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows
,”
Chem. Eng. Sci.
120
,
67
87
(
2014
).
42.
Majlesara
,
M.
,
Abouali
,
O.
,
Kamali
,
R.
,
Ardekani
,
M. N.
, and
Brandt
,
L.
, “
Numerical study of hot and cold spheroidal particles in a viscous fluid
,”
Int. J. Heat Mass Transfer
149
,
119206
(
2020
).
43.
Milioli
,
C. C.
,
Milioli
,
F. E.
,
Holloway
,
W.
,
Agrawal
,
K.
, and
Sundaresan
,
S.
, “
Filtered two-fluid models of fluidized gas-particle flows: New constitutive relations
,”
AIChE J.
59
,
3265
3275
(
2013
).
44.
Patil
,
A. V.
,
Peters
,
E. A. J. F.
, and
Kuipers
,
J. A. M.
, “
Comparison of CFD–DEM heat transfer simulations with infrared/visual measurements
,”
Chem. Eng. J.
277
,
388
401
(
2015
).
45.
Peng
,
Z. B.
,
Doroodchi
,
E.
, and
Moghtaderi
,
B.
, “
Heat transfer modelling in discrete element method (DEM)-based simulations of thermal processes: Theory and model development
,”
Prog. Energy Combust. Sci.
79
,
100847
(
2020
).
46.
Ranz
,
W. E.
, and
Marshall
,
W. R.
, “
Evaporation from drops
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
47.
Rauchenzauner
,
S.
, and
Schneiderbauer
,
S.
, “
Spatially-averaged models for heat transfer in gas-solid flows
,” in Proceedings of the
AIChE Annual Meeting
,
Pittsburgh
(
2018
).
48.
Rauchenzauner
,
S.
, and
Schneiderbauer
,
S.
, “
A dynamic spatially averaged two-fluid model for heat transport in moderately dense gas–particle flows
,”
Phys. Fluids
32
,
063307
(
2020
).
49.
Shaffer
,
F.
,
Gopalan
,
B.
,
Breault
,
R. W.
,
Cocco
,
R.
,
Karri
,
S. B. R.
,
Hays
,
R.
, and
Knowlton
,
T.
, “
High speed imaging of particle flow fields in CFB risers
,”
Powder Technol.
242
,
86
99
(
2013
).
50.
Sun
,
B.
,
Tenneti
,
S.
, and
Subramaniam
,
S.
, “
Modeling average gas–solid heat transfer using particle-resolved direct numerical simulation
,”
Int. J. Heat Mass Transfer
86
,
898
913
(
2015
).
51.
Sun
,
Y. H.
,
Zhang
,
W. T.
,
Wang
,
X. L.
, and
Liu
,
Q. Q.
, “
Numerical study on immersed granular collapse in viscous regime by particle-scale simulation
,”
Phys. Fluids
32
,
073313
(
2020
).
52.
Sutkar
,
V. S.
,
Deen
,
N. G.
,
Patil
,
A. V.
,
Salikov
,
V.
,
Antonyuk
,
S.
,
Heinrich
,
S.
, and
Kuipers
,
J. A. M.
, “
CFD–DEM model for coupled heat and mass transfer in a spout fluidized bed with liquid injection
,”
Chem. Eng. J.
288
,
185
197
(
2016
).
53.
Tavassoli
,
H.
, “
Direct numerical simulation of dense gas-solids non-isothermal flows
,” Ph.D. thesis (Eindhoven University of Technology,
2014
).
54.
Tenneti
,
S.
,
Sun
,
B.
,
Garg
,
R.
, and
Subramaniam
,
S.
, “
Role of fluid heating in dense gas–solid flow as revealed by particle-resolved direct numerical simulation
,”
Int. J. Heat Mass Transfer
58
,
471
479
(
2013
).
55.
Thiam
,
E. I.
,
Masi
,
E.
,
Climent
,
E.
,
Simonin
,
O.
, and
Vincent
,
S.
, “
Particle-resolved numerical simulations of the gas-solid heat transfer in arrays of random motionless particles
,”
Acta Mech.
230
,
541
567
(
2019
).
56.
Tsuo
,
Y. P.
, and
Gidaspow
,
D.
, “
Computation of flow patterns in circulating fluidized beds
,”
AIChE J.
36
(
6
),
885
(
1990
).
57.
Volk
,
A.
, and
Ghia
,
U.
, “
Theoretical analysis of computational fluid dynamics–discrete element method mathematical model solution change with varying computational cell size
,”
J. Fluids Eng.
141
,
091402
(
2019
).
58.
Wakao
,
N.
, and
Kaguei
,
S.
,
Heat and Mass Transfer in Packed Bed
, 1st ed. (
Gordon and Breach Science Publishers
,
New York
,
1982
).
59.
Wang
,
J. W.
, “
Continuum theory for dense gas-solid flow: A state-of-the-art review
,”
Chem. Eng. Sci.
215
,
115428
(
2020
).
60.
Wang
,
J. W.
,
Zhao
,
P.
, and
Zhao
,
B. D.
, “
Supersonic and near-equilibrium gas-driven granular flow
,”
Phys. Fluids
32
,
113302
(
2020
).
61.
Wang
,
L. M.
,
Wu
,
C. Y.
, and
Ge
,
W.
, “
Effect of particle clusters on mass transfer between gas and particles in gas-solid flows
,”
Powder Technol.
319
,
221
227
(
2017
).
62.
Wang
,
S.
,
Lu
,
H. L.
,
Liu
,
G. D.
,
Sheng
,
Z. H.
,
Xu
,
P. F.
, and
Dimitri
,
G.
, “
Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds
,”
Powder Technol.
208
,
98
110
(
2011
).
63.
Wang
,
S.
,
Luo
,
K.
,
Hu
,
C. S.
,
Lin
,
J. J.
, and
Fan
,
J. R.
, “
CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application
,”
Chem. Eng. Sci.
197
,
280
295
(
2019
).
64.
Wang
,
S. Y.
,
Liu
,
G. D.
,
Wu
,
Y. B.
,
Chen
,
J. H.
,
Liu
,
Y. J.
, and
Wei
,
L. X.
, “
Numerical investigation of gas-to-particle cluster convective heat transfer in circulating fluidized beds
,”
Int. J. Heat Mass Transfer
53
,
3102
3110
(
2010
).
65.
Wang
,
Y. D.
,
Wang
,
H. B.
,
Jin
,
H.
, and
Guo
,
L. J.
, “
Numerical simulation of adiabatic/cooled/heated spherical particles with Stefan flow in supercritical water
,”
Phys. Fluids
33
,
053305
(
2021
).
66.
Wen
,
X.
,
Wang
,
H. O.
,
Luo
,
Y. J.
, and
Fan
,
J. R.
, “
Evaluation of flamelet/progress variable model for laminar pulverized coal combustion
,”
Phys. Fluids
29
,
083607
(
2017
).
67.
Whitaker
,
S.
, “
Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles
,”
AIChE J.
18
,
361
371
(
1972
).
68.
Xu
,
J.
, and
Zhu
,
J. X.
, “
Visualization of particle aggregation and effects of particle properties on cluster characteristics in a CFB riser
,”
Chem. Eng. J.
168
,
376
389
(
2011
).
69.
Yang
,
N.
,
Wang
,
W.
,
Ge
,
W.
, and
Li
,
J. H.
, “
CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient
,”
Chem. Eng. J.
96
,
71
80
(
2003
).
70.
Yerushalmi
,
J.
,
Cankurt
,
N. T.
,
Geldart
,
D.
, and
Liss
,
B.
, “
In flow regimes in vertical gas-solid contact systems
,” in
Proceedings of the 69th Annual Meeting of the AICHE
,
Chicago
(
1976
).
71.
Zhao
,
K.
,
Vowinckel
,
B.
,
Hsu
,
T. J.
,
Köllner
,
T.
,
Bai
,
B. F.
, and
Meiburg
,
E.
, “
An efficient cellular flow model for cohesive particle flocculation in turbulence
,”
J. Fluid Mech.
889
,
R3
(
2020a
).
72.
Zhao
,
L.
,
Chen
,
X.
, and
Zhou
,
Q.
, “
Inhomogeneous drag models for gas-solid suspensions based on sub-grid quantities
,”
Powder Technol.
385
,
170
184
(
2021
).
73.
Zhao
,
P.
,
Xu
,
J.
,
Liu
,
X. C.
,
Ge
,
W.
, and
Wang
,
J. W.
, “
A computational fluid dynamics-discrete element-immersed boundary method for Cartesian grid simulation of heat transfer in compressible gas-solid flow with complex geometries
,”
Phys. Fluids
32
,
103306
(
2020b
).
74.
Zhou
,
G. F.
,
Xiong
,
Q. A.
,
Wang
,
L. M.
,
Wang
,
X. W.
,
Ren
,
X. X.
, and
Ge
,
W.
, “
Structure-dependent drag in gas–solid flows studied with direct numerical simulation
,”
Chem. Eng. Sci.
116
,
9
22
(
2014
).
75.
Zhu
,
L. T.
,
Ouyang
,
B.
,
Lei
,
H.
, and
Luo
,
Z. H.
, “
Conventional and data-driven modeling of filtered drag, heat transfer, and reaction rate in gas–particle flows
,”
AIChE J.
67
,
e17299
(
2021
).
76.
Zhu
,
W. C.
,
Wang
,
Y. H.
, and
Wang
,
J. P.
, “
Flow field of a rotating detonation engine fueled by carbon
,”
Phys. Fluids
34
,
073311
(
2022
).
77.
Zhuang
,
Y. Q.
,
Chen
,
X. M.
,
Hong
,
Z. H.
, and
Xiao
,
J.
, “
CFD–DEM modeling of gas–solid flow and catalytic MTO reaction in a fluidized bed reactor
,”
Comput. Chem. Eng.
60
,
1
16
(
2014
).
You do not currently have access to this content.