This paper conducted a computational fluid dynamics study of bubbly jets (not bubble plumes due to pure gas injection) in crossflow to explore the hydrodynamics that are still unknown. A three-dimensional model was developed, calibrated, and validated by coupling the Euler–Euler two-fluid model with unsteady Reynolds-averaged Navier–Stokes approach in OpenFOAM. The results showed that the modeled gas void fraction, bubble velocity, water jet centerline trajectory, and jet expansion agree well with the experimental data. The vertical distribution of turbulent kinetic energy evolves from mono-peak to dual-peaks as the jet penetrates farther for the bubbly jet due to the interactions between bubbles and ambient water flow. Water velocity distribution was examined at cross sections of both the air- and water-phases of bubbly jets in crossflow, and counter-rotating vortex pairs can be clearly observed for both phases. Generally, the center-plane maximum concentration decreases in the crossflow direction. Compared to pure water jets, bubbly jets are stretched wider in the vertical direction due to the lift of bubbles, and thus, dilution is larger. Interestingly, the vorticity at water jet cross sections of bubbly jets evolves from two vertical “kidney-shapes” to two axisymmetric “thumb-up-shapes.” Moreover, effects of ambient crossflow on bubbly jet behaviors were systematically examined. As the crossflow velocity increases, the locations of maximum concentration, maximum velocity magnitude, maximum vorticity magnitude, as well as water jet centerline, all tend to be lower for bubbly jets.

1.
L.
Zheng
and
P. D.
Yapa
, “
Simulation of oil spills from underwater accidents. II. Model verification
,”
J. Hydraul. Res.
36
(
1
),
117
134
(
1998
).
2.
S. A.
Socolofsky
and
E. E.
Adams
, “
Multi-phase plumes in uniform and stratified crossflow
,”
J. Hydraul. Res.
40
(
6
),
661
672
(
2002
).
3.
W.
Zhang
and
D. Z.
Zhu
, “
Bubble characteristics of air-water bubbly jets in crossflow
,”
Int. J. Multiphase Flow
55
,
156
171
(
2013
).
4.
Z.
Rek
,
J.
Gregorc
,
M.
Bouaifi
, and
C.
Daniel
, “
Numerical simulation of gas jet in liquid crossflow with high mean jet to crossflow velocity ratio
,”
Chem. Eng. Sci.
172
,
667
676
(
2017
).
5.
P.
Dong
,
B.
Lu
,
S.
Gong
, and
D.
Cheng
, “
Experimental study of submerged gas jets in liquid cross flow
,”
Exp. Therm. Fluid Sci.
112
,
109998
(
2020
).
6.
I. E.
Lima Neto
,
D. Z.
Zhu
, and
N.
Rajaratnam
, “
Bubbly jets in stagnant water
,”
Int. J. Multiphase Flow
34
(
12
),
1130
1141
(
2008
).
7.
M. A.
Balzán
,
R. S.
Sanders
, and
B. A.
Fleck
, “
Bubble formation regimes during gas injection into a liquid cross flow in a conduit
,”
Can. J. Chem. Eng.
95
(
2
),
372
385
(
2017
).
8.
C.
Kang
,
W.
Zhang
,
Y. G.
Ji
, and
Y.
Cui
, “
Geometry and motion characteristics of bubbles released in liquid cross flow
,”
J. Appl. Fluid Mech.
12
(
3
),
667
677
(
2019
).
9.
X.
Dong
,
X.
Xu
, and
Z.
Liu
, “
Behavior of bubble plume in shear-thinning crossflowing liquids
,”
Chem. Eng. Res. Des.
168
,
288
296
(
2021
).
10.
B.
Wang
and
S. A.
Socolofsky
, “
On the bubble rise velocity of a continually released bubble chain in still water and with crossflow
,”
Phys. Fluids
27
(
10
),
103301
(
2015
).
11.
Y.
Xu
,
A. M.
Aliyu
,
H.
Seo
,
J. J.
Wang
, and
K. C.
Kim
, “
Effect of crossflow velocity on underwater bubble swarms
,”
Int. J. Multiphase Flow
105
,
60
73
(
2018
).
12.
Y.
Le Moullec
,
O.
Potier
,
C.
Gentric
, and
J. P.
Leclerc
, “
Flow field and residence time distribution simulation of a cross-flow gas-liquid wastewater treatment reactor using CFD
,”
Chem. Eng. Sci.
63
(
9
),
2436
2449
(
2008
).
13.
E.
Mitrou
,
B.
Fraga
, and
T.
Stoesser
, “
An Eulerian-Lagrangian numerical method to predict bubbly flows
,” in
Proceedings of the E3S Web of Conferences
(
EDP Sciences
,
2018
), Vol.
40
.
14.
M. A.
Pakhomov
and
V. I.
Terekhov
, “
Structure of the turbulent flow in a submerged axisymmetric gas-saturated jet
,”
J. Appl. Mech. Tech. Phys.
60
(
5
),
805
815
(
2019
).
15.
Y. X.
Wang
,
Z. G.
Yin
,
W.
Zhang
, and
D. Z.
Zhu
, “
Computational study of bubbly jets in stagnant water
,”
J. Hydrodyn.
31
(
5
),
1021
1033
(
2019
).
16.
Z. G.
Yin
,
D. C.
Liu
,
Y.
Li
, and
Y. X.
Wang
, “
Oxygen transfer characteristics of bubbly jet in regular waves
,”
J. Hydrodyn.
32
(
5
),
879
887
(
2020
).
17.
H.
Seo
and
K. C.
Kim
, “
Experimental study on flow and turbulence characteristics of bubbly jet with low void fraction
,”
Int. J. Multiphase Flow
142
,
103738
(
2021
).
18.
W.
Zhang
, “
Air injection for river water quality improvement
,” Ph.D. thesis (
Department of Civil and Environmental Engineering, University of Alberta
,
Edmonton, Canada
,
2012
).
19.
W.
Zhang
and
D. Z.
Zhu
, “
Trajectories of air-water bubbly jets in crossflows
,”
J. Hydraul. Eng.
140
(
7
),
06014011
(
2014
).
20.
L.
Zheng
,
P. D.
Yapa
, and
F.
Chen
, “
A model for simulating deepwater oil and gas blowouts. I. Theory and model formulation
,”
J. Hydraul. Res.
41
(
4
),
339
351
(
2003
).
21.
F.
Chen
and
P. D.
Yapa
, “
A model for simulating deep water oil and gas blowouts. II. Comparison of numerical simulations with ‘Deepspill’ field experiments
,”
J. Hydraul. Res.
41
(
4
),
353
365
(
2003
).
22.
F.
Chen
and
P. D.
Yapa
, “
Modeling gas separation from a bent deepwater oil and gas jet/plume
,”
J. Mar. Syst.
45
,
189
203
(
2004
).
23.
A. L.
Dissanayake
,
J.
Gros
, and
S. A.
Socolofsky
, “
Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow
,”
Environ. Fluid Mech.
18
(
5
),
1167
1202
(
2018
).
24.
M. G.
Fard
,
A.
Vernet
,
Y.
Stiriba
, and
X.
Grau
, “
Transient large-scale two-phase flow structures in a 3D bubble column reactor
,”
Int. J. Multiphase Flow
127
,
103236
(
2020
).
25.
B.
Niceno
,
M. T.
Dhotre
, and
N. G.
Deen
, “
One-equation sub-grid scale (SGS) modelling for Euler-Euler large eddy simulation (EELES) of dispersed bubbly flow
,”
Chem. Eng. Sci.
63
(
15
),
3923
3931
(
2008
).
26.
M. H.
Mohammadi
,
F.
Sotiropoulos
, and
J. R.
Brinkerhoff
, “
Eulerian-Eulerian large eddy simulation of two-phase dilute bubbly flows
,”
Chem. Eng. Sci.
208
,
115156
(
2019
).
27.
Z.
Liu
,
Y.
Wu
, and
B.
Li
, “
An assessment on the performance of sub-grid scale models of large eddy simulation in modeling bubbly flows
,”
Powder Technol.
374
,
470
481
(
2020
).
28.
S. J.
Zhu
,
A.
Ooi
,
R.
Manasseh
, and
A.
Skvortsov
, “
Prediction of gas holdup in partially aerated bubble columns using an EE-LES coupled model
,”
Chem. Eng. Sci.
217
,
115492
(
2020
).
29.
V.
Kannan
,
P. R.
Naren
,
V. V.
Buwa
, and
A.
Dutta
, “
Effect of drag correlation and bubble-induced turbulence closure on the gas hold‐up in a bubble column reactor
,”
J. Chem. Technol. Biotechnol.
94
(
9
),
2944
2954
(
2019
).
30.
X.
Hu
,
A. D.
Ilgun
,
A.
Passalacqua
,
R. O.
Fox
,
F.
Bertola
,
M.
Milosevic
, and
F.
Visscher
, “
CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM®
,”
Int. J. Chem. Reactor Eng.
19
(
2
),
193
207
(
2021
).
31.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Dover Publications
,
Mineola, NY
,
1978
).
32.
L.
Schiller
and
A.
Naumann
, “
A drag coefficient correlation
,”
Z. Ver. Dtsch. Ing.
77
,
318
320
(
1935
).
33.
M.
Ishii
and
N.
Zuber
, “
Drag coefficient and relative velocity in bubbly, droplet or particulate flows
,”
AIChE J.
25
(
5
),
843
855
(
1979
).
34.
M. V.
Tabib
,
S. A.
Roy
, and
J. B.
Joshi
, “
CFD simulation of bubble column—An analysis of interphase forces and turbulence models
,”
Chem. Eng. J.
139
(
3
),
589
614
(
2008
).
35.
M. T.
Dhotre
,
B.
Niceno
, and
B. L.
Smith
, “
Large eddy simulation of a bubble column using dynamic sub-grid scale model
,”
Chem. Eng. J.
136
,
337
348
(
2008
).
36.
M.
Lopez de Bertodano
,
R. T.
Lahey
, Jr.
, and
O. C.
Jones
, “
Development of a k-ε model for bubbly two-phase flow
,”
J. Fluids Eng.
116
,
128
134
(
1994
).
37.
A.
Behzadi
,
R. I.
Issa
, and
H.
Rusche
, “
Modelling of dispersed bubble and droplet flow at high phase fractions
,”
Chem. Eng. Sci.
59
(
4
),
759
770
(
2004
).
38.
V. H.
Bhusare
,
M. K.
Dhiman
,
D. V.
Kalaga
,
S.
Roy
, and
J. B.
Joshi
, “
CFD simulations of a bubble column with and without internals by using OpenFOAM
,”
Chem. Eng. J.
317
,
157
174
(
2017
).
39.
W.
Shi
,
X.
Yang
,
M.
Sommerfeld
,
J.
Yang
,
X.
Cai
,
G.
Li
, and
Y.
Zong
, “
Modelling of mass transfer for gas-liquid two-phase flow in bubble column reactor with a bubble breakage model considering bubble-induced turbulence
,”
Chem. Eng. J.
371
,
470
485
(
2019
).
40.
S. S.
Deshpande
,
L.
Anumolu
, and
M. F.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
(
1
),
014016
(
2012
).
41.
R. I.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
(
1
),
40
65
(
1986
).
42.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
, Electro Skills Series (
Hemisphere Publishing Corporation
,
1980
).
43.
M.
Milelli
, “
A numerical analysis of confined turbulent bubble plume
,”
Diss. EH. No. 14799
(
Swiss Federal Institute of Technology
,
Zurich
,
2002
).
44.
M. E.
Diaz
,
A.
Iranzo
,
D.
Cuadra
,
R.
Barbero
,
F. J.
Montes
, and
M. A.
Galán
, “
Numerical simulation of the gas–liquid flow in a laboratory scale bubble column: Influence of bubble size distribution and non-drag forces
,”
Chem. Eng. J.
139
(
2
),
363
379
(
2008
).
45.
D.
Pfleger
and
S.
Becker
, “
Modelling and simulation of the dynamic flow behavior in a bubble column
,”
Chem. Eng. Sci.
56
(
4
),
1737
1747
(
2001
).
46.
V. V.
Buwa
and
V. V.
Ranade
, “
Dynamics of gas-liquid flow in a rectangular bubble column: Experiments and single/multi-group CFD simulations
,”
Chem. Eng. Sci.
57
,
4715
4736
(
2002
).
47.
L.
Liu
,
O.
Keplinger
,
T.
Ziegenhein
,
N.
Shevchenko
,
S.
Eckert
,
H.
Yan
, and
D.
Lucas
, “
Euler–Euler modeling and X-ray measurement of oscillating bubble chain in liquid metals
,”
Int. J. Multiphase Flow
110
,
218
237
(
2019
).
48.
J. H. W.
Lee
and
V. H.
Chu
,
Turbulent Jets and Plumes: A Lagrangian Approach
(
Kluwer Academic Publisher
,
Norwell, MA
,
2003
).
49.
L. L.
Yuan
, “
Large eddy simulations of a jet in crossflow
,” Ph.D. thesis (
Department of Mechanical Engineering, Stanford University
,
Stanford, CA
,
1997
).
50.
J.
Ziefle
and
L.
Kleiser
, “
Large-eddy simulation of a round jet in crossflow
,”
AIAA J.
47
(
5
),
1158
1172
(
2009
).
51.
L.
Zhang
and
V.
Yang
, “
Flow dynamics and mixing of a transverse jet in crossflow. I. Steady crossflow
,”
J. Eng. Gas Turbines Power
139
(
8
),
082601
(
2017
).
52.
L. L.
Yuan
,
R. L.
Street
, and
J. H.
Ferziger
, “
Large-eddy simulations of a round jet in crossflow
,”
J. Fluid Mech.
379
,
71
104
(
1999
).
53.
Z. B.
Du
,
W.
Huang
,
L.
Yan
,
L. Q.
Li
,
Z.
Chen
, and
S. B.
Li
, “
RANS study of steady and pulsed gaseous jets into a supersonic crossflow
,”
Int. J. Heat Mass Transfer
136
,
157
169
(
2019
).
54.
F.
Coletti
,
M. J.
Benson
,
J.
Ling
,
C. J.
Elkins
, and
J. K.
Eaton
, “
Turbulent transport in an inclined jet in crossflow
,”
Int. J. Heat Fluid Flow
43
,
149
160
(
2013
).
55.
M. W.
Plesniak
and
D. M.
Cusano
, “
Scalar mixing in a confined rectangular jet in crossflow
,”
J. Fluid Mech.
524
,
1
45
(
2005
).
You do not currently have access to this content.