This study examines the movement of a small freely rotating spherical particle in a two-dimensional trajectory through a viscoelastic fluid described by the Giesekus model. The fluid equations of motion in the inertialess limit and the Giesekus constitutive equation are expanded as a power series in the Weissenberg number, for which analytical solutions for velocity and pressure profiles at low order can be determined for the case of a steady-state flow. These steady solutions are then related to Fourier-transformed variables in frequency space through the use of correspondence relationships, allowing the analysis of time-dependent particle trajectories. The relative unsteadiness and nonlinearity of these time-dependent flows are quantified through a Deborah and Weissenberg number, respectively. The impact of changing these dimensionless parameters on the characteristics of the flow is discussed at length. We calculate the predicted rate of rotation of a small particle undergoing an arbitrary two-dimensional translation through a viscoelastic fluid, as well as the predicted correction to the force exerted on the particle arising from the interaction of particle rotation and translation. Finally, we calculate the angular velocity and total force including second-order corrections for particles executing a few specific trajectories that have been studied experimentally, as well as the predicted trajectory for a particle being directed by a known time-dependent forcing protocol.

1.
G. H.
McKinley
, “
Steady transient motion of spherical particles in viscoelastic liquids
,” in
Transport Processes in Bubbles, Drops and Particles
, 2nd ed., edited by
E.
Chhabra
and
D. D.
Kee
(
Taylor & Franics
,
2001
).
2.
E. S. G.
Shaqfeh
, “
On the rheology of particle suspensions in viscoelastic fluids
,”
AIChE J.
65
,
e16575
(
2019
).
3.
R. I.
Tanner
, “
Computation and experiment in non-colloidal suspension rheology
,”
J. Non-Newtonian Fluid Mech.
281
,
104282
(
2020
).
4.
K.
Zhao
and
T. G.
Mason
, “
Assembly of colloidal particles in solution
,”
Rep. Prog. Phys.
81
,
126601
(
2018
).
5.
L. E.
Becker
,
G. H.
McKinley
,
H. K.
Rasmussen
, and
O.
Hassager
, “
The unsteady motion of a sphere in a viscoelastic fluid
,”
J. Rheol.
38
,
377
403
(
1994
).
6.
K. D.
Housiadas
and
R. I.
Tanner
, “
A high-order perturbation solution for the steady sedimentation of a sphere in a viscoelastic fluid
,”
J. Non-Newtonian Fluid Mech.
233
,
166
180
(
2016
).
7.
K. D.
Housiadas
and
R. I.
Tanner
, “
The angular velocity of a freely rotating sphere in a weakly viscoelastic matrix fluid
,”
Phys. Fluids
23
,
051702
(
2011
).
8.
A.
Castillo
,
W. L.
Murch
,
J.
Einarsson
,
B.
Mena
,
E. S. G.
Shaqfeh
, and
R.
Zenit
, “
Drag coefficient for a sedimenting and rotating sphere in a viscoelastic fluid
,”
Phys. Rev. Fluids
4
,
1
22
(
2019
).
9.
F.
Snijkers
,
G.
D'Avino
,
P. L.
Maffettone
,
F.
Greco
,
M. A.
Hulsen
, and
J.
Vermant
, “
Effect of viscoelasticity on the rotation of a sphere in shear flow
,”
J. Non-Newtonian Fluid Mech.
166
,
363
372
(
2011
).
10.
G.
D'Avino
,
M. A.
Hulsen
,
F.
Snijkers
,
J.
Vermant
,
F.
Greco
, and
P. L.
Maffettone
, “
Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results
,”
J. Rheol.
52
,
1331
1346
(
2008
).
11.
K. D.
Housiadas
and
R. I.
Tanner
, “
Perturbation solution for the viscoelastic 3D flow around a rigid sphere subject to simple shear
,”
Phys. Fluids
23
,
083101
(
2011
).
12.
H.
Giesekus
, “
Strömungen mit konstantem Geschwindigkeitsgradienten und die Bewegung von darin suspendierten Teilchen—Teil I: Räumliche Strömungen
,”
Rheol. Acta
2
,
101
112
(
1962
).
13.
H.
Giesekus
, “
Die simultane Translations- und Rotationsbewegung einer Kugel in einer elastoviskosen Flüssigkeit
,”
Rheol. Acta
3
,
59
71
(
1963
).
14.
F. M.
Leslie
and
R. I.
Tanner
, “
The slow flow of a viscoelastic liquid past a sphere
,”
Q. J. Mech. Appl. Math.
14
,
36
48
(
1961
).
15.
R. I.
Tanner
and
K.
Walters
, “
Hanswalter Giesekus 1922–2017
,”
Rheol. Acta
57
,
691
692
(
2018
).
16.
H.
Giesekus
, “
Die Elastizität von Flüssigkeiten
,”
Rheol. Acta
5
,
29
35
(
1966
).
17.
H.
Giesekus
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
,
69
109
(
1982
).
18.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassanger
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
, 2nd ed. (
Wiley
,
1987
).
19.
M. A.
Hulsen
and
J.
van der Zanden
, “
Numerical simulation of contraction flows using a multi-mode Giesekus model
,”
J. Non-Newtonian Fluid Mech.
38
,
183
221
(
1991
).
20.
X.
Su
,
Z.
Xu
,
Z.
Wang
,
H.
Jin
,
S.
Wu
, and
Y.
Lu
, “
Data-driven closure model for the drag coefficient of the creeping flow past a translating sphere in a shear-thinning viscoelastic fluid
,”
Powder Technol.
400
,
117266
(
2022
).
21.
L. M.
Quinzani
,
G. H.
McKinley
,
R. A.
Brown
, and
R. C.
Armstrong
, “
Modeling the rheology of polyisobutylene solutions
,”
J. Rheol.
34
,
705
748
(
1990
).
22.
J. P.
Rothstein
, “
Transient extensional rheology of wormlike micelle solutions
,”
J. Rheol.
47
,
1227
(
2003
).
23.
M. T.
Arigo
and
G. H.
McKinley
, “
An experimental investigation of negative wakes behind spheres settling in a shear-thinning viscoelastic fluid
,”
Rheol. Acta
37
,
307
327
(
1998
).
24.
M. D.
Torres
,
B.
Hallmark
,
L.
Hilliu
, and
D. I.
Wilson
, “
Natural Giesekus fluids: Shear and extensional behavior of food gum solutions in the semi-dilute regime
,”
AIChE J.
60
,
3902
3915
(
2014
).
25.
S.
Varchanis
,
Y.
Dimakopoulos
,
C.
Wagner
, and
J.
Tsamopoulos
, “
How viscoelastic is human blood plasma?
,”
Soft Matter
14
,
4238
4251
(
2018
).
26.
Z.
Li
and
J.
Lin
, “
On the some issues of particle motion in the flow of viscoelastic fluids
,”
Acta Mech. Sin.
38
,
321467
(
2022
).
27.
S.
Dai
and
R. I.
Tanner
, “
Rheology of non-colloidal suspensions with viscoelastic matrices
,”
Soft Matter
16
,
9519
9524
(
2020
).
28.
M. D.
Chilcott
and
J. H.
Rallison
, “
Creeping flow of dilute polymer solutions past cylinders and spheres
,”
J. Non-Newtonian Fluid Mech.
29
,
381
432
(
1988
).
29.
C.
Bodart
and
M. J.
Crochet
, “
The time-dependent flow of a viscoelastic fluid around a sphere
,”
J. Non-Newtonian Fluid Mech.
54
,
303
329
(
1994
).
30.
M. N. J.
Moore
and
M. J.
Shelley
, “
A weak-coupling expansion for viscoelastic fluids applied to dynamic settling of a body
,”
J. Non-Newtonian Fluid Mech.
183–184
,
25
36
(
2012
).
31.
M. A.
Joens
and
J. W.
Swan
, “
Unsteady and lineal translation of a sphere through a viscoelastic fluid
,”
Phys. Rev. Fluids
7
,
013301
(
2022
).
32.
D.
Son
,
M. C.
Ugurlu
, and
M.
Sitti
, “
Permanent magnet array-driven navigation of wireless millirobots inside soft tissues
,”
Sci. Adv.
7
,
1
11
(
2021
).
33.
J. G.
Lee
,
A. M.
Brooks
,
W. A.
Shelton
,
K. J. M.
Bishop
, and
B.
Bharti
, “
Directed propulsion of spherical particles along three dimensional helical trajectories
,”
Nat. Commun.
10
,
2575
(
2019
).
34.
Z.
Ye
and
M.
Sitti
, “
Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot
,”
Lab Chip
14
,
2177
2182
(
2014
).
35.
S. K.
Gupta
,
J.
Sun
,
Y. L.
Han
,
C.
Lyu
,
T.
He
, and
M.
Guo
, “
Quantification of Cell-Matrix interaction in 3D using optical tweezers
,” in
Multi-Scale Extracellular Matrix Mechanics and Mechanobiology
, edited by
Y.
Zhang
(
Springer International Publishing
,
Cham
,
2020
), pp.
283
310
.
36.
A.
Spatafora-Salazar
,
L. H. P.
Cunha
, and
S. L.
Biswal
, “
Periodic deformation of semiflexible colloidal chains in eccentric time-varying magnetic fields
,”
J. Phys.: Condens. Matter
34
,
184005
(
2022
).
37.
L. W.
Rogowski
,
J.
Ali
,
X.
Zhang
,
J. N.
Wilking
,
H. C.
Fu
, and
M. J.
Kim
, “
Symmetry breaking propulsion of magnetic microspheres in nonlinearly viscoelastic fluids
,”
Nat. Commun.
12
,
1116
(
2021
).
38.
L. A.
Kroo
,
J. P.
Binagia
,
N.
Eckman
,
M.
Prakash
, and
E. S. G.
Shaqfeh
, “
A freely suspended robotic swimmer propelled by viscoelastic normal stresses
,”
J. Fluid Mech.
944
,
A20
(
2022
).
39.
R.
Schuech
,
R.
Cortez
, and
L.
Fauci
, “
Performance of a helical microswimmer traversing a discrete viscoelastic network with dynamic remodeling
,”
Fluids
7
,
257
(
2022
).
40.
R. J.
Poole
, “
The Deborah and Weissenberg numbers
,”
Br. Soc. Rheol.
53
,
32
39
(
2012
).
41.
J. M.
Dealy
, “
Weissenberg and Deborah numbers—Their definition and use
,”
Rheol. Bull.
79
,
14
19
(
2010
).
42.
H.
Masoud
and
H. A.
Stone
, “
The reciprocal theorem in fluid dynamics and transport phenomena
,”
J. Fluid Mech.
879
,
P1
(
2019
).
43.
B.
Schnurr
,
F.
Gittes
,
F. C.
MacKintosh
, and
C. F.
Schmidt
, “
Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations
,”
Macromolecules
30
,
7781
7792
(
1997
).
44.
É.
Guazzelli
and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
New York
,
2012
).
45.
S. A.
Klioner
, “
New system for indicial computation and its applications in gravitational physics
,”
Comput. Phys. Commun.
115
,
231
244
(
1998
).
46.
S. K.
Gupta
,
K. R.
Lennon
,
M. A.
Joens
,
H.
Bandi
,
M.
Van Galen
,
Y.
Han
,
W.
Tang
,
Y.
Li
,
S. C.
Wasserman
,
J. W.
Swan
, and
M.
Guo
, “
Optical tweezer measurements of asymptotic nonlinearities in complex fluids
,”
Phys. Rev. E
104
,
064604
(
2021
).
47.
K. R.
Lennon
,
G. H.
McKinley
, and
J. W.
Swan
, “
Medium amplitude parallel superposition (MAPS) rheology. Part 1: Mathematical framework and theoretical examples
,”
J. Rheol.
64
,
551
579
(
2020
).
You do not currently have access to this content.