Starting from a suspension of elastic dumbbells or chain-like particle aggregates as a simple model of a viscoelastic liquid, the rheological equation of state is inductively derived into which the concept of an “elastic strain component” (recoverable strain) is incorporated and can be understood as a nonlinear extension of the so-called “generalized Maxwell model.” Here, the liquid is characterized by a sequence of nested continua, each associated with an elasticity law. The consideration of the directional dependence of the mobility of the structural elements requires that the behavior of the liquids represented in this way generally deviates from a Weissenberg liquid.
References
1.
W.
Noll
, “A mathematical theory of the mechanical behavior of continuous media
,” Arch. Ration. Mech. Anal.
2
(1
), 197
–226
(1958
);B. D.
Coleman
and W.
Noll
, “An approximation theorem for functionals, with applications in continuum mechanics
,” Arch. Ration. Mech. Anal.
6
, 355
–370
(1960
);B. D.
Coleman
andW.
Noll
, “Foundations of linear viscoelasticity
,” Rev. Mod. Phys.
33
(2
), 239
(1961
);B. D.
Coleman
and W.
Noll
, “Simple fluids with fading memory
,” in Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics
, edited by M.
Reiner
and D.
Aber
(Macmillan
, New York
, 1964
), pp. 530
–551
.2.
C.
Truesdell
, “A new definition of a fluid, I: The Stokesian fluid
,” J. Math. Pure Appl.
29
, 215
–244
(1950
);C.
Truesdell
, “A new definition of a fluid, II: The Maxwellian fluid
,” J. Math. Pure Appl.
30
, 111
–158
(1951
).3.
J. L.
Ericksen
, “Transversely isotropic fluids
.” Kolloid-Z.
173
(2
), 117
–122
(1960
);J. L.
Ericksen
, “Theory of anisotropic fluids
.” Trans. Soc. Rheol.
4
(1
), 29
–39
(1959
);J. L.
Ericksen
, “Anisotropic fluids
.” Arch. Ration. Mech. Anal.
4
(1
), 231
–237
(1960
);J. L.
Ericksen
, “Poiseuille flow of certain anisotropic fluids
.” Arch. Ration. Mech. Anal.
8
(1
), 1
–8
(1961
).4.
J. G.
Oldroyd
, “Some steady flows of the general elastico-viscous liquid
,” Proc. R. Soc. A
283
(1392
), 115
–133
(1965
).5.
K.
Weissenberg
, “Conference British Rheologist's Club 1946
,”in Proceedings of the International Congress on Rheology
(North-Holland, 1948
), Vol. 3
, pp. 36
–45
.6.
M.
Mooney
, “Secondary stresses in viscoelastic flow
,” J. Colloid Sci.
6
(2
), 96
–107
(1951
).7.
W.
Philippoff
, “On normal stresses, flow curves, flow birefringence, and normal stresses of polyisobutylene solutions. Part I. Fundamental principles
,” Trans. Soc. Rheol.
1
, 95
–107
(1957
).8.
J.
Meixner
, “On the theory of linear viscoelastic behavior
,” Rheol. Acta
4
(2
), 77
–85
(1965
).9.
H.
Giesekus
, “Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmungen sämtliche Normalspannungskomponenten verschieden groß sind
,” Rheol. Acta
2
(1
), 50
–62
(1962
).10.
H.
Giesekus
, “Einige ergänzende Bemerkungen zur Darstellung der rheologischen Zustandsgleichung nach Weissenberg und Grossman
,” Z. Angew. Math. Mech.
42
(6
), 259
–262
(1962
).11.
H.
Giesekus
, “Statistical rheology of suspensions and solutions with special reference to normal stress effects
,” in Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics
, edited by M.
Reiner
and D.
Aber
(Macmillan
, New York
, 1964
), pp. 553
–584
.12.
H.
Giesekus
, “Die rheologische Zustandsgleichung elasto‐viskoser Flüssigkeiten—Insbesondere von Weissenberg‐Flüssigkeiten—Für allgemeine und stationäre Fließvorgänge
,” Z. Angew. Math. Mech.
42
(1‐2
), 32
–61
(1962
).13.
J. G.
Oldroyd
, “On the formulation of rheological equations of state
,” Proc. R. Soc. A
200
(1063
), 523
–541
(1950
).14.
N.
Adams
and A. S.
Lodge
, “Rheological properties of concentrated polymer solutions II. A cone-and-plate and parallel-plate pressure distribution apparatus for determining normal stress differences in steady shear flow
,” Philos. Trans. R. Soc., A
256
(1068
), 149
–184
(1964
).15.
H.
Giesekus
, “Sekundärströmungen in viskoelastischen Flüssigkeiten bei stationärer und periodischer Bewegung
,” Rheol. Acta
4
(2
), 85
–101
(1965
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.