Starting from a suspension of elastic dumbbells or chain-like particle aggregates as a simple model of a viscoelastic liquid, the rheological equation of state is inductively derived into which the concept of an “elastic strain component” (recoverable strain) is incorporated and can be understood as a nonlinear extension of the so-called “generalized Maxwell model.” Here, the liquid is characterized by a sequence of nested continua, each associated with an elasticity law. The consideration of the directional dependence of the mobility of the structural elements requires that the behavior of the liquids represented in this way generally deviates from a Weissenberg liquid.

1.
W.
Noll
, “
A mathematical theory of the mechanical behavior of continuous media
,”
Arch. Ration. Mech. Anal.
2
(
1
),
197
226
(
1958
);
B. D.
Coleman
and
W.
Noll
, “
An approximation theorem for functionals, with applications in continuum mechanics
,”
Arch. Ration. Mech. Anal.
6
,
355
370
(
1960
);
B. D.
Coleman
and
W.
Noll
, “
Foundations of linear viscoelasticity
,”
Rev. Mod. Phys.
33
(
2
),
239
(
1961
);
B. D.
Coleman
and
W.
Noll
, “
Simple fluids with fading memory
,” in
Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics
, edited by
M.
Reiner
and
D.
Aber
(
Macmillan
,
New York
,
1964
), pp.
530
551
.
2.
C.
Truesdell
, “
A new definition of a fluid, I: The Stokesian fluid
,”
J. Math. Pure Appl.
29
,
215
244
(
1950
);
C.
Truesdell
, “
A new definition of a fluid, II: The Maxwellian fluid
,”
J. Math. Pure Appl.
30
,
111
158
(
1951
).
3.
J. L.
Ericksen
, “
Transversely isotropic fluids
.”
Kolloid-Z.
173
(
2
),
117
122
(
1960
);
J. L.
Ericksen
, “
Theory of anisotropic fluids
.”
Trans. Soc. Rheol.
4
(
1
),
29
39
(
1959
);
J. L.
Ericksen
, “
Anisotropic fluids
.”
Arch. Ration. Mech. Anal.
4
(
1
),
231
237
(
1960
);
J. L.
Ericksen
, “
Poiseuille flow of certain anisotropic fluids
.”
Arch. Ration. Mech. Anal.
8
(
1
),
1
8
(
1961
).
4.
J. G.
Oldroyd
, “
Some steady flows of the general elastico-viscous liquid
,”
Proc. R. Soc. A
283
(
1392
),
115
133
(
1965
).
5.
K.
Weissenberg
, “
Conference British Rheologist's Club 1946
,”in
Proceedings of the International Congress on Rheology
(North-Holland,
1948
), Vol.
3
, pp.
36
45
.
6.
M.
Mooney
, “
Secondary stresses in viscoelastic flow
,”
J. Colloid Sci.
6
(
2
),
96
107
(
1951
).
7.
W.
Philippoff
, “
On normal stresses, flow curves, flow birefringence, and normal stresses of polyisobutylene solutions. Part I. Fundamental principles
,”
Trans. Soc. Rheol.
1
,
95
107
(
1957
).
8.
J.
Meixner
, “
On the theory of linear viscoelastic behavior
,”
Rheol. Acta
4
(
2
),
77
85
(
1965
).
9.
H.
Giesekus
, “
Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmungen sämtliche Normalspannungskomponenten verschieden groß sind
,”
Rheol. Acta
2
(
1
),
50
62
(
1962
).
10.
H.
Giesekus
, “
Einige ergänzende Bemerkungen zur Darstellung der rheologischen Zustandsgleichung nach Weissenberg und Grossman
,”
Z. Angew. Math. Mech.
42
(
6
),
259
262
(
1962
).
11.
H.
Giesekus
, “
Statistical rheology of suspensions and solutions with special reference to normal stress effects
,” in
Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics
, edited by
M.
Reiner
and
D.
Aber
(
Macmillan
,
New York
,
1964
), pp.
553
584
.
12.
H.
Giesekus
, “
Die rheologische Zustandsgleichung elasto‐viskoser Flüssigkeiten—Insbesondere von Weissenberg‐Flüssigkeiten—Für allgemeine und stationäre Fließvorgänge
,”
Z. Angew. Math. Mech.
42
(
1‐2
),
32
61
(
1962
).
13.
J. G.
Oldroyd
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. A
200
(
1063
),
523
541
(
1950
).
14.
N.
Adams
and
A. S.
Lodge
, “
Rheological properties of concentrated polymer solutions II. A cone-and-plate and parallel-plate pressure distribution apparatus for determining normal stress differences in steady shear flow
,”
Philos. Trans. R. Soc., A
256
(
1068
),
149
184
(
1964
).
15.
H.
Giesekus
, “
Sekundärströmungen in viskoelastischen Flüssigkeiten bei stationärer und periodischer Bewegung
,”
Rheol. Acta
4
(
2
),
85
101
(
1965
).
You do not currently have access to this content.