Semicrystalline polymers are an attractive feedstock choice for material extrusion (MatEx)-based three-dimensional printing processes. However, the printed parts often exhibit poor mechanical properties due to weak interlayer strength thereby limiting the widespread adoption of MatEx. Improved interlayer strength in the printed parts can be achieved through a combination of process parameter selection and material modification but a physics-based understanding of the underlying mechanism is not well understood. Furthermore, the localized thermal history experienced by the prints can significantly influence the strength of the interlayer welds. In this work, a combined experimental and modeling approach has been employed to highlight the relative impact of rheology, non-isothermal crystallization kinetics, and print geometry on the interlayer strength of printed parts of two semicrystalline polymers, namely, polylactic acid (PLA) and polypropylene (PP). Specifically, the print properties have been characterized as a function of print temperature and print speed. In the case of single road width wall (SRWW) PLA prints, the total crystalline fraction increases due to the broadening of the crystallization window at higher print temperatures and lower print speeds. The results are substantiated by the constitutive modeling results that account for the effects of quiescent crystallization. However, SRWW PP prints display a reduction in the interlayer properties with temperature likely due to significant flow-induced crystallization effects, as suggested by the model. Interestingly, in the case of multilayer PP prints, the repeated heating/cooling cycles encountered during printing counteracts the flow-induced effects leading to an increase in mechanical properties with print temperature consistent with SRWW PLA prints.

1.
B. N.
Turner
,
R.
Strong
, and
S. A.
Gold
, “
A review of melt extrusion additive manufacturing processes. I. Process design and modeling
,”
Rapid Prototyping J.
20
,
192
(
2014
).
2.
H.
Wu
,
W. P.
Fahy
,
S.
Kim
,
H.
Kim
,
N.
Zhao
,
L.
Pilato
,
A.
Kafi
,
S.
Bateman
, and
J. H.
Koo
, “
Recent developments in polymers/polymer nanocomposites for additive manufacturing
,”
Prog. Mater. Sci.
111
,
100638
(
2020
).
3.
A.
Das
,
C. A.
Chatham
,
J. J.
Fallon
,
C. E.
Zawaski
,
E. L.
Gilmer
,
C. B.
Williams
, and
M. J.
Bortner
, “
Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers
,”
Addit. Manuf.
34
,
101218
(
2020
).
4.
W.
Gao
,
Y.
Zhang
,
D.
Ramanujan
,
K.
Ramani
,
Y.
Chen
,
C. B.
Williams
,
C. C. L.
Wang
,
Y. C.
Shin
,
S.
Zhang
, and
P. D.
Zavattieri
, “
The status, challenges, and future of additive manufacturing in engineering
,”
Comput.-Aided Des.
69
,
65
(
2015
).
5.
D.
Vaes
and
P.
Van Puyvelde
, “
Semi-crystalline feedstock for filament-based 3D printing of polymers
,”
Prog. Polym. Sci.
118
,
101411
(
2021
).
6.
T. D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
,”
Compos., Part B
143
,
172
(
2018
).
7.
S. C.
Ligon
,
R.
Liska
,
J.
Stampfl
,
M.
Gurr
, and
R.
Mülhaupt
, “
Polymers for 3D printing and customized additive manufacturing
,”
Chem. Rev.
117
,
10212
(
2017
).
8.
S.
Singh
,
G.
Singh
,
C.
Prakash
, and
S.
Ramakrishna
, “
Current status and future directions of fused filament fabrication
,”
J. Manuf. Processes
55
,
288
(
2020
).
9.
I.
Gibson
,
D.
Rosen
, and
B.
Stucker
, “
Additive manufacturing technologies: 3D printing
,”
in
Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed. (
Springer-Verlag
,
New York
,
2015
).
10.
X.
Gao
,
S.
Qi
,
X.
Kuang
,
Y.
Su
,
J.
Li
, and
D.
Wang
, “
Fused filament fabrication of polymer materials: A review of interlayer bond
,”
Addit. Manuf.
37
,
101658
(
2021
).
11.
M.
Spoerk
,
C.
Holzer
, and
J.
Gonzalez-Gutierrez
, “
Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage
,”
J. Appl. Polym. Sci.
137
,
48545
(
2020
).
12.
A.
Das
,
A. E. C.
Marnot
,
J. J.
Fallon
,
S. M.
Martin
,
E. G.
Joseph
, and
M. J.
Bortner
, “
Material extrusion-based additive manufacturing with blends of polypropylene and hydrocarbon resins
,”
ACS Appl. Polym. Mater.
2
,
911
(
2020
).
13.
F.
Pigeonneau
,
D.
Xu
,
M.
Vincent
, and
J.-F.
Agassant
, “
Heating and flow computations of an amorphous polymer in the liquefier of a material extrusion 3D printer
,”
Addit. Manuf.
32
,
101001
(
2020
).
14.
M. P.
Serdeczny
,
R.
Comminal
,
M.
Mollah
,
D. B.
Pedersen
, and
J.
Spangenberg
, “
Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing
,”
Addit. Manuf.
36
,
101454
(
2020
).
15.
C. O.
Ufodike
and
G. C.
Nzebuka
, “
Investigation of thermal evolution and fluid flow in the hot-end of a material extrusion 3D Printer using melting model
,”
Addit. Manuf.
49
,
102502
(
2022
).
16.
Z.
Ouyang
,
E.
Bertevas
,
D.
Wang
,
B. C.
Khoo
,
J.
Férec
,
G.
Ausias
, and
N.
Phan-Thien
, “
A smoothed particle hydrodynamics study of a non-isothermal and thermally anisotropic fused deposition modeling process for a fiber-filled composite
,”
Phys. Fluids
32
,
053106
(
2020
).
17.
Z.
Ouyang
,
E.
Bertevas
,
L.
Parc
,
B. C.
Khoo
,
N.
Phan-Thien
,
J.
Férec
, and
G.
Ausias
, “
A smoothed particle hydrodynamics simulation of fiber-filled composites in a non-isothermal three-dimensional printing process
,”
Phys. Fluids
31
,
123102
(
2019
).
18.
S.
Bakrani Balani
,
F.
Chabert
,
V.
Nassiet
, and
A.
Cantarel
, “
Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid
,”
Addit. Manuf.
25
,
112
(
2019
).
19.
C.
McIlroy
and
R. S.
Graham
, “
Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts
,”
Addit. Manuf.
24
,
323
(
2018
).
20.
C.
McIlroy
and
P. D.
Olmsted
, “
Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing
,”
J. Rheol.
61
,
379
(
2017
).
21.
C.
McIlroy
and
P. D.
Olmsted
, “
Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing
,”
Polymer
123
,
376
(
2017
).
22.
A.
Das
,
C.
McIlroy
, and
M. J.
Bortner
, “
Advances in modeling transport phenomena in material-extrusion additive manufacturing: Coupling momentum, heat, and mass transfer
,”
Prog. Addit. Manuf.
6
,
3
(
2021
).
23.
D. B.
Kline
and
R. P.
Wool
, “
Polymer welding relations investigated by a lap shear joint method
,”
Polym. Eng. Sci.
28
,
52
(
1988
).
24.
A.
Das
,
E. L.
Gilmer
,
S.
Biria
, and
M. J.
Bortner
, “
Importance of polymer rheology on material extrusion additive manufacturing: Correlating process physics to print properties
,”
ACS Appl. Polym. Mater.
3
,
1218
(
2021
).
25.
J.-R.
Ai
and
B. D.
Vogt
, “
Size and print path effects on mechanical properties of material extrusion 3D printed plastics
,”
Prog. Addit. Manuf.
7
,
1009
(
2022
).
26.
T.
D'Amico
and
A. M.
Peterson
, “
Bead parameterization of desktop and room-scale material extrusion additive manufacturing: How print speed and thermal properties affect heat transfer
,”
Addit. Manuf.
34
,
101239
(
2020
).
27.
J. T.
Owens
,
A.
Das
, and
M. J.
Bortner
, “
Accelerating heat transfer modeling in material extrusion additive manufacturing: From desktop to big area
,”
Addit. Manuf.
55
,
102853
(
2022
).
28.
S.
Petersmann
,
P.
Erdely
,
M.
Feuchter
,
T.
Wieme
,
F.
Arbeiter
, and
M.
Spoerk
, “
Process-induced morphological features in material extrusion-based additive manufacturing of polypropylene
,”
Addit. Manuf.
35
,
101384
(
2020
).
29.
Y.
Shmueli
,
J.
Jiang
,
Y.
Zhou
,
Y.
Xue
,
C.-C.
Chang
,
G.
Yuan
,
S. K.
Satija
,
S.
Lee
,
C.-Y.
Nam
,
T.
Kim
,
G.
Marom
,
D.
Gersappe
, and
M. H.
Rafailovich
, “
Simultaneous in situ x-ray scattering and infrared imaging of polymer extrusion in additive manufacturing
,”
ACS Appl. Polym. Mater.
1
,
1559
(
2019
).
30.
Y.
Shmueli
,
Y.-C.
Lin
,
S.
Lee
,
M.
Zhernenkov
,
R.
Tannenbaum
,
G.
Marom
, and
M. H.
Rafailovich
, “
In situ time-resolved x-ray scattering study of isotactic polypropylene in additive manufacturing
,”
ACS Appl. Mater. Interfaces
11
,
37112
(
2019
).
31.
C.
McIlroy
,
J. E.
Seppala
, and
A. P.
Kotula
, in
Polymer-Based Additive Manufacturing: Recent Developments
(
American Chemical Society
,
2019
), pp.
85
113
.
32.
V.
Srinivas
,
C. S. J.
van Hooy-Corstjens
, and
J. A. W.
Harings
, “
Correlating molecular and crystallization dynamics to macroscopic fusion and thermodynamic stability in fused deposition modeling; a model study on polylactides
,”
Polymer
142
,
348
(
2018
).
33.
A.
Costanzo
,
U.
Croce
,
R.
Spotorno
,
S. E.
Fenni
, and
D.
Cavallo
, “
Fused deposition modeling of polyamides: Crystallization and weld formation
,”
Polymers
12
,
2980
(
2020
).
34.
A.
Nogales
,
E.
Gutiérrez-Fernández
,
M.-C.
García-Gutiérrez
,
T. A.
Ezquerra
,
E.
Rebollar
,
I.
Šics
,
M.
Malfois
,
S.
Gaidukovs
,
E.
Gēcis
,
K.
Celms
, and
G.
Bakradze
, “
Structure development in polymers during fused filament fabrication (FFF): An in situ small- and wide-angle x-ray scattering study using synchrotron radiation
,”
Macromolecules
52
,
9715
(
2019
).
35.
J. M.
Chacón
,
M. A.
Caminero
,
P. J.
Núñez
,
E.
García-Plaza
,
I.
García-Moreno
, and
J. M.
Reverte
, “
Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties
,”
Compos. Sci. Technol.
181
,
107688
(
2019
).
36.
A.
Costanzo
,
R.
Spotorno
,
M. V.
Candal
,
M. M.
Fernández
,
A. J.
Müller
,
R. S.
Graham
,
D.
Cavallo
, and
C.
McIlroy
, “
Residual alignment and its effect on weld strength in material-extrusion 3D-printing of polylactic acid
,”
Addit. Manuf.
36
,
101415
(
2020
).
37.
A.
Costanzo
,
D.
Cavallo
, and
C.
McIlroy
, “
High-performance co-polyesters for material-extrusion 3D printing: A molecular perspective of weld properties
,”
Addit. Manuf.
49
,
102474
(
2022
).
38.
A.
Das
, “
Material extrusion based additive manufacturing of semicrystalline polymers: correlating rheology with print properties
,” Ph.D. dissertation (
Virginia Tech
,
2022
).
39.
B.
Wittbrodt
and
J. M.
Pearce
, “
The effects of PLA color on material properties of 3D printed components
,”
Addit. Manuf.
8
,
110
(
2015
).
40.
A.
Das
,
N.
Shanmugham
, and
M. J.
Bortner
, “
Customized blends of polypropylene for extrusion based additive manufacturing
,”
J. Vinyl Addit. Technol.
2022
,
1
.
41.
E. W.
Fischer
,
H. J.
Sterzel
, and
G.
Wegner
, “
Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions
,”
Kolloid Z. Z. Polym.
251
,
980
(
1973
).
42.
D.
Bagheriasl
,
P. J.
Carreau
,
C.
Dubois
, and
B.
Riedl
, “
Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites
,”
Compos. Sci. Technol.
117
,
357
(
2015
).
43.
C. B.
Sweeney
,
B. A.
Lackey
,
M. J.
Pospisil
,
T. C.
Achee
,
V. K.
Hicks
,
A. G.
Moran
,
B. R.
Teipel
,
M. A.
Saed
, and
M. J.
Green
, “
Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating
,”
Sci. Adv.
3
,
e1700262
(
2017
).
44.
J. E.
Seppala
,
S. H.
Han
,
K. E.
Hillgartner
,
C. S.
Davis
, and
K. B.
Migler
, “
Weld formation during material extrusion additive manufacturing
,”
Soft Matter
13
,
6761
(
2017
).
45.
A.
Costanzo
,
A.
Poggi
,
S.
Looijmans
,
D.
Venkatraman
,
D.
Sawyer
,
L.
Puskar
,
C.
Mcllroy
, and
D.
Cavallo
, “
The role of molar mass in achieving isotropy and inter-layer strength in Mat-Ex printed polylactic acid
,”
Polymers
14
,
2792
(
2022
).
46.
C.
McIlroy
, “
A fundamental rule: Determining the importance of flow prior to polymer crystallization
,”
Phys. Fluids
31
,
113103
(
2019
).
47.
J.
Pu
,
C.
McIlroy
,
A.
Jones
, and
I.
Ashcroft
, “
Understanding mechanical properties in fused filament fabrication of polyether ether ketone
,”
Addit. Manuf.
37
,
101673
(
2021
).
48.
E. L.
Gilmer
,
D.
Anderegg
,
J. M.
Gardner
,
G.
Sauti
,
E. J.
Siochi
,
S. H.
McKnight
,
D. A.
Dillard
,
C.
McIlroy
, and
M. J.
Bortner
, “
Temperature, diffusion, and stress modeling in filament extrusion additive manufacturing of polyetherimide: An examination of the influence of processing parameters and importance of modeling assumptions
,”
Addit. Manuf.
48
,
102412
(
2021
).
49.
I. M.
Hodge
, “
Effects of annealing and prior history on enthalpy relaxation in glassy polymers. II. Mathematical modeling
,”
Macromolecules
15
,
762
(
1982
).
50.
L.
Suryanegara
,
A. N.
Nakagaito
, and
H.
Yano
, “
Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites
,”
Cellulose
17
,
771
(
2010
).
51.
M. E.
Mackay
, “
The importance of rheological behavior in the additive manufacturing technique material extrusion
,”
J. Rheol.
62
,
1549
(
2018
).
52.
B.
Coppola
,
N.
Cappetti
,
L. D.
Maio
,
P.
Scarfato
, and
L.
Incarnato
, “
3D Printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties
,”
Materials
11
,
1947
(
2018
).
53.
W.
Yu
,
X.
Wang
,
E.
Ferraris
, and
J.
Zhang
, “
Melt crystallization of PLA/Talc in fused filament fabrication
,”
Mater. Des.
182
,
108013
(
2019
).
54.
S.
Thumsorn
,
W.
Prasong
,
T.
Kurose
,
A.
Ishigami
,
Y.
Kobayashi
, and
H.
Ito
, “
Rheological behavior and dynamic mechanical properties for interpretation of layer adhesion in FDM 3D printing
,”
Polymers
14
,
2721
(
2022
).
55.
M. V.
Candal
,
I.
Calafel
,
N.
Aranburu
,
M.
Fernández
,
G.
Gerrica-Echevarria
,
A.
Santamaría
, and
A. J.
Müller
, “
Thermo-rheological effects on successful 3D printing of biodegradable polyesters
,”
Addit. Manuf.
36
,
101408
(
2020
).
56.
M. V.
Candal
,
I.
Calafel
,
M.
Fernández
,
N.
Aranburu
,
R. H.
Aguirresarobe
,
G.
Gerrica-Echevarria
,
A.
Santamaría
, and
A. J.
Müller
, “
Study of the interlayer adhesion and warping during material extrusion-based additive manufacturing of a carbon nanotube/biobased thermoplastic polyurethane nanocomposite
,”
Polymer
224
,
123734
(
2021
).
57.
J. C.
Halpin
and
J. L.
Kardos
, “
Moduli of crystalline polymers employing composite theory
,”
J. Appl. Phys.
43
,
2235
(
1972
).
58.
Y.
Shmueli
,
Y.-C.
Lin
,
X.
Zuo
,
Y.
Guo
,
S.
Lee
,
G.
Freychet
,
M.
Zhernenkov
,
T.
Kim
,
R.
Tannenbaum
,
G.
Marom
,
D.
Gersappe
, and
M. H.
Rafailovich
, “
In-situ x-ray scattering study of isotactic polypropylene/graphene nanocomposites under shear during fused deposition modeling 3D printing
,”
Compos. Sci. Technol.
196
,
108227
(
2020
).
59.
G. A. M.
Capote
,
N. M.
Rudolph
,
P. V.
Osswald
, and
T. A.
Osswald
, “
Failure surface development for ABS fused filament fabrication parts
,”
Addit. Manuf.
28
,
169
(
2019
).
60.
R. H.
Somani
,
B. S.
Hsiao
,
A.
Nogales
,
H.
Fruitwala
,
S.
Srinivas
, and
A. H.
Tsou
, “
Structure development during shear flow induced crystallization of i-PP: In situ wide-angle x-ray diffraction study
,”
Macromolecules
34
,
5902
(
2001
).
61.
T.
Foresta
,
S.
Piccarolo
, and
G.
Goldbeck-Wood
, “
Competition between α and γ phases in isotactic polypropylene: Effects of ethylene content and nucleating agents at different cooling rates
,”
Polymer
42
,
1167
(
2001
).
62.
D. J.
Read
,
C.
McIlroy
,
C.
Das
,
O. G.
Harlen
, and
R. S.
Graham
, “
PolySTRAND model of flow-induced nucleation in polymers
,”
Phys. Rev. Lett.
124
,
147802
(
2020
).
63.
R.
Pantani
,
I.
Coccorullo
,
V.
Volpe
, and
G.
Titomanlio
, “
Shear-induced nucleation and growth in isotactic polypropylene
,”
Macromolecules
43
,
9030
(
2010
).
You do not currently have access to this content.