Experimental observations of drops of water with aniline dye softly located or impacting onto balsa wood substrates were used to elucidate the effect of an in-plane electric field (at a high voltage of 10 kV applied) on drop behavior. The top and side views were recorded simultaneously. The short-term recordings (on the scale of a few ms) demonstrated a slight effect of the applied in-plane electric field. In some trials, a greater number of finger-like structures were observed along the drop rim compared to the trials without voltage applied. These fingers developed during the advancing motion of the drop rim. The long-term recording (on the scale of ∼10 s) was used to evaluate the wettability-driven increase in the area-equivalent radius of the wetted area. These substrates had grooves in the inter-electrode or the cross-field directions. The groove directions affected the wettability-driven spreading and imbibition. The wettability-driven spreading in the long term was a much more significant effect than the effect of the electric field, because the imbibition significantly diminished the drop part above the porous surface, which diminished, in turn, the electric Maxwell stresses, which could stretch the drop. A simplified analytical model was developed to measure the moisture transport coefficient responsible for liquid imbibition in these experiments. Furthermore, the phase-field modeling of drops on balsa was used to illustrate how a change in the contact angle from hydrophobic to hydrophilic triggers drop imbibition into balsa wood.

1.
J. B.
Lee
,
D.
Derome
,
R.
Guyer
, and
J.
Carmeliet
, “
Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces
,”
Langmuir
32
,
1299
1308
(
2016
).
2.
A. L.
Yarin
,
I. V.
Roisman
, and
C.
Tropea
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
Cambridge
,
2017
).
3.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows, Fundamentals and Simulation
(
Springer
,
Berlin
,
2005
).
4.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
5.
F.
Mugele
and
J.-C.
Baret
, “
Electrowetting: From basics to applications
,”
J. Phys.
17
,
R705
R774
(
2005
).
6.
F.
Mugele
and
J.
Heikenfeld
,
Electrowetting: Fundamental Principles and Practical Applications
(
Wiley-VCH
,
Weinheim
,
2019
).
7.
M. W.
Lee
,
S. S.
Latthe
,
A. L.
Yarin
, and
S. S.
Yoon
, “
Dynamic electrowetting-on-dielectric (DEWOD) on unstretched and stretched Teflon
,”
Langmuir
29
,
7758
7767
(
2013
).
8.
J.
Plog
,
J.-M.
Löwe
,
Y.
Jiang
,
Y.
Pan
, and
A. L.
Yarin
, “
Drop control by electrowetting in 3D printing
,”
Langmuir
35
,
11023
11036
(
2019
).
9.
A. L.
Yarin
, “
Wetting for self-healing, and electrowetting for additive manufacturing
,”
Curr. Opin. Colloid Interface Sci.
51
,
101378
(
2020
).
10.
L.
Chen
and
E.
Bonaccurso
, “
Electrowetting—From statics to dynamics
,”
Adv. Colloid Interface Sci.
210
,
2
12
(
2014
).
11.
A.
Sankaran
,
J.
Wu
,
R.
Granda
,
V.
Yurkiv
,
F.
Mashayek
, and
A. L.
Yarin
, “
Drop impact onto polarized dielectric surface for controlled coating
,”
Phys. Fluids
33
,
062101
(
2021
).
12.
V.
Yurkiv
,
A. L.
Yarin
, and
F.
Mashayek
, “
Modeling of droplet impact onto polarized and nonpolarized dielectric surfaces
,”
Langmuir
34
,
10169
10180
(
2018
).
13.
A. A.
Bochkarev
,
P. I.
Geshev
,
V. I.
Polyakova
, and
N. I.
Yavorskii
, “
Connection between the deformation of paint droplets during deposition on the surface being painted and the orientation of pigment particles
,”
Theor. Found. Chem. Eng.
45
,
399
408
(
2011
).
14.
R.
Granda
,
J.
Plog
,
G.
Li
,
V.
Yurkiv
,
F.
Mashayek
, and
A. L.
Yarin
, “
Evolution and shape of 2D Stokesian drops under the action of surface tension and electric field: Linear and nonlinear theory and experiment
,”
Langmuir
37
,
11429
11446
(
2021
).
15.
R.
Granda
,
V.
Yurkiv
,
F.
Mashayek
, and
A. L.
Yarin
, “
Metamorphosis of trilobite-like drops on a surface: Electrically driven fingering
,”
Phys. Fluids
33
,
124107
(
2021
).
16.
R.
Granda
,
G.
Li
,
V.
Yurkiv
,
F.
Mashayek
, and
A. L.
Yarin
, “
Dielectrophoretic stretching of drops of silicone oil: Experiments and multi-physical modeling
,”
Phys. Fluids
34
,
042108
(
2022
).
17.
A.
Mikkelsen
,
K.
Khobaib
,
F. K.
Eriksen
,
K. J.
Måløy
, and
Z.
Rozynek
, “
Particle-covered drops in electric fields: Drop deformation and surface particle organization
,”
Soft Matter
14
,
5442
5451
(
2018
).
18.
A. N.
Lembach
,
H. B.
Tan
,
I. V.
Roisman
,
T.
Gambaryan-Roisman
,
Y.
Zhang
,
C.
Tropea
, and
A. L.
Yarin
, “
Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats
,”
Langmuir
26
,
9516
9523
(
2010
).
19.
A. L.
Yarin
,
B.
Pourdeyhimi
, and
S.
Ramakrishna
,
Fundamentals and Applications of Micro- and Nanofibers
(
Cambridge University Press
,
Cambridge
,
2014
).
20.
P. P.
Chen
and
X. S.
Wang
, “
Experimental study of water drop impact on wood surfaces
,”
Int. J. Heat Mass Transfer
54
,
4143
4147
(
2011
).
21.
Y.
Zhuo
,
S.
Hussain
, and
S.
Lin
, “
Effect of surface roughness on the collision dynamics of water drops on wood
,”
Colloids Surf. A
612
,
125989
(
2021
).
22.
J.
Shen
and
X.
Wang
, “
Substrate counts: Quantitative effects of surface roughness on fingering pattern and rim shape of an impacting drop
,”
Phys. Fluids
32
,
093313
(
2020
).
23.
S. P.
Tang
,
S.
Hussain
, and
S. Y.
Lin
, “
Collision dynamics of SDS solution drops on a smooth wood substrate: Role of surface tension
,”
J. Mol. Liquids
320
,
114480
(
2020
).
24.
S.
Hussain
and
S. Y.
Lin
, “
Impingement of aqueous film forming foam (AFFF) solution drops on wood: Wetting and splash
,”
J. Ind. Eng. Chem.
88
,
356
365
(
2020
).
25.
S. M.
Shah
,
U.
Zulfiqar
,
S. Z.
Hussain
,
I.
Ahmad
,
Habib-ur-Rehman
,
I.
Hussain
, and
T.
Subhani
, “
A durable superhydrophobic coating for the protection of wood materials
,”
Mater. Lett.
203
,
17
20
(
2017
).
26.
M.
Vural
and
G.
Ravichandran
, “
Microstructural aspects and modeling of failure in naturally occurring porous composites
,”
Mech. Mater.
35
,
523
536
(
2003
).
27.
A. L.
Yarin
,
M. W.
Lee
,
S.
An
, and
S. S.
Yoon
,
Self-Healing Nanotextured Vascular Engineering Materials
(
Springer Nature
,
Cham, Switzerland
,
2019
).
28.
A. L.
Yarin
, “
Self-similarity
,” in
Springer Handbook of Experimental Fluid Mechanics
(
Springer
,
Heidelberg
,
2007
), pp.
57
82
.
29.
A. V.
Luikov
, “
Heat and mass transfer in capillary-porous bodies
,”
Adv. Heat Transfer
1
,
123
184
(
1964
).
30.
A. V.
Luikov
,
Heat and Mass Transfer in Capillary-Porous Bodies
(
Pergamon Press
,
Oxford
,
1966
).
31.
D.
Jacqmin
, “
Calculation of two-phase Navier–Stokes flows using phase-field modeling
,”
J. Comput. Phys
155
,
96
127
(
1999
).
32.
D.
Jacqmin
, “
Contact-line dynamics of a diffuse fluid interface
,”
J. Fluid Mech.
402
,
57
88
(
2000
).
33.
COMSOL®
,
CFD Module User's Guide COMSOL Multiphysics
(
COMSOL
,
2018
), pp.
1
710
.
34.
H.
Abels
,
H.
Garcke
, and
G.
Grün
, “
Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities
,”
Math. Models Methods Appl. Sci.
22
,
1150013
(
2012
).
35.
F.
Bai
,
X.
He
,
X.
Yang
,
R.
Zhou
, and
C.
Wang
, “
Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation
,”
Int. J. Multiphase Flow
93
,
130
141
(
2017
).
36.
C. Y.
Lim
and
Y. C.
Lam
, “
Phase-field simulation of impingement and spreading of micro-sized droplet on heterogeneous surface
,”
Microfluid. Nanofluid.
17
,
131
148
(
2014
).
37.
F. O.
Alpak
,
B.
Riviere
, and
F.
Frank
, “
A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition
,”
Comput. Geosci.
20
,
881
908
(
2016
).
38.
H.
Ding
and
P. D. M.
Spelt
, “
Wetting condition in diffuse interface simulations of contact line motion
,”
Phys. Rev. E
75
,
046708
(
2007
).
39.
Q.
Zhang
,
T. Z.
Qian
, and
X. P.
Wang
, “
Phase field simulation of a drop impacting a solid surface
,”
Phys. Fluids
28
,
022103
022118
(
2016
).
40.
COMSOL
,
COMSOL Multiphysics® v. 5.4 Reference Manual 1622
(
COMSOL
,
2018
).
41.
M. J.
Cunningham
,
R. B.
Keey
, and
C.
Kerdemelidis
, “
Isothermal moisture transfer coefficients in pinus radiata above the fiber saturation point, using the moment method
,”
Wood Fiber Sci.
21
,
112
122
(
1989
).
42.
I.
Dincer
and
S.
Dost
, “
Determination of moisture diffusivities and moisture transfer coefficients for wooden slabs subject to drying
,”
Wood Sci. Technol.
30
,
245
251
(
1996
).
43.
J.
Niklewski
and
M.
Fredriksson
, “
The effects of joints on the moisture behaviour of rain exposed wood: A numerical study with experimental validation
,”
Wood Mater. Sci. Eng.
16
,
1
11
(
2021
).
44.
Z.
Perkowski
,
J.
Świrska-Perkowska
, and
M.
Gajda
, “
Comparison of moisture diffusion coefficients for pine, oak and linden wood
,”
J. Build. Phys.
41
,
135
161
(
2017
).
45.
R. B.
Keey
,
T. A. G.
Langrish
, and
J. C. F.
Walker
,
Kiln-Drying of Lumber
, Springer Series in Wood Science (
Springer
,
Berlin
,
2020
).
You do not currently have access to this content.