We report experiments of centimeter-sized sessile drop coalescence aboard the International Space Station, where microgravity conditions enable inertial-capillary spreading motions to be explored for a range of hydrophobic wetting conditions. Observations of the time traces of the coalescence event and projected areas compare favorably to numerical simulations, which employ the Davis–Hocking contact line (CL) condition with contact line mobility M parameter independently measured using the resonant-frequency scan technique of Xia and Steen [“Moving contact-line mobility measured,” J. Fluid Mech. 841, 767–783 (2018)]. This observation suggests that M is a material parameter, and that the Davis–Hocking model is an appropriate CL model for inertial-capillary spreading.

1.
B.
Blocken
,
D.
Derome
, and
J.
Carmeliet
, “
Rainwater runoff from building facades: A review
,”
Build. Environ.
60
,
339
361
(
2013
).
2.
S.
Karpitschka
,
A.
Pandey
,
L. A.
Lubbers
,
J. H.
Weijs
,
L.
Botto
,
S.
Das
,
B.
Andreotti
, and
J. H.
Snoeijer
, “
Liquid drops attract or repel by the inverted Cheerios effect
,”
Proc. Natl. Acad. Sci.
113
,
7403
7407
(
2016
).
3.
W.
Wróblewski
and
S.
Dykas
, “
Two-fluid model with droplet size distribution for condensing steam flows
,”
Energy
106
,
112
120
(
2016
).
4.
P. M.
Somwanshi
,
K.
Muralidhar
, and
S.
Khandekar
, “
Coalescence of vertically aligned drops over a superhydrophobic surface
,”
Phys. Fluids
32
,
052106
(
2020
).
5.
R.
Blossey
, “
Self-cleaning surfaces–virtual realities
,”
Nat. Mater.
2
,
301
306
(
2003
).
6.
Q.
Vo
and
T.
Tran
, “
Dynamics of droplets under electrowetting effect with voltages exceeding the contact angle saturation threshold
,”
J. Fluid Mech.
925
,
A19
(
2021
).
7.
R.
Narhe
,
D.
Beysens
, and
V.
Nikolayev
, “
Contact line dynamics in drop coalescence and spreading
,”
Langmuir
20
,
1213
1221
(
2004
).
8.
M. A.
Nilsson
and
J. P.
Rothstein
, “
The effect of contact angle hysteresis on droplet coalescence and mixing
,”
J. Colloid Interface Sci.
363
,
646
654
(
2011
).
9.
J.
Jin
,
C. H.
Ooi
,
D. V.
Dao
, and
N.-T.
Nguyen
, “
Coalescence processes of droplets and liquid marbles
,”
Micromachines
8
,
336
(
2017
).
10.
H. P.
Kavehpour
, “
Coalescence of drops
,”
Annu. Rev. Fluid Mech.
47
,
245
268
(
2015
).
11.
A.-L.
Biance
,
C.
Clanet
, and
D.
Quéré
, “
First steps in the spreading of a liquid droplet
,”
Phys. Rev. E
69
,
016301
(
2004
).
12.
J. M.
Ludwicki
and
P. H.
Steen
, “
Sweeping by sessile drop coalescence
,”
Eur. Phys. J.: Spec. Top.
229
,
1739
1756
(
2020
).
13.
J. M.
Ludwicki
,
V. R.
Kern
,
J.
McCraney
,
J. B.
Bostwick
,
S.
Daniel
, and
P. H.
Steen
, “
Is contact-line mobility a material parameter?
,”
npj Microgravity
8
,
6
(
2022
).
14.
Y.
Cheng
,
F.
Wang
,
J.
Xu
,
D.
Liu
, and
Y.
Sui
, “
Numerical investigation of droplet spreading and heat transfer on hot substrates
,”
Int. J. Heat Mass Transfer
121
,
402
411
(
2018
).
15.
P. M.
Somwanshi
,
V.
Cheverda
,
K.
Muralidhar
,
S.
Khandekar
, and
O.
Kabov
, “
Understanding vertical coalescence dynamics of liquid drops over a superhydrophobic surface using high-speed orthographic visualization
,”
Exp. Fluids
63
,
47
(
2022
).
16.
J.
Rose
, “
Dropwise condensation theory and experiment: A review
,”
Proc. Inst. Mech. Eng., Part A
216
,
115
128
(
2002
).
17.
K. A.
Estes
and
I.
Mudawar
, “
Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces
,”
Int. J. Heat Mass Transfer
38
,
2985
2996
(
1995
).
18.
M.
Bao
,
F.
Wang
,
Y.
Guo
,
L.
Gong
, and
S.
Shen
, “
Experimental study of two-phase heat transfer of droplet impact on liquid film
,”
Phys. Fluids
34
,
042119
(
2022
).
19.
Y.-H.
Kim
,
B.
Yoo
,
J. E.
Anthony
, and
S. K.
Park
, “
Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing
,”
Adv. Mater.
24
,
497
502
(
2012
).
20.
X.
Gao
,
H.
Chen
,
Q.
Nie
, and
H.
Fang
, “
Stability of line shapes in inkjet printing at low substrate speeds
,”
Phys. Fluids
34
,
032002
(
2022
).
21.
M. A.
Hack
,
P.
Vondeling
,
M.
Cornelissen
,
D.
Lohse
,
J. H.
Snoeijer
,
C.
Diddens
, and
T.
Segers
, “
Asymmetric coalescence of two droplets with different surface tensions is caused by capillary waves
,”
Phys. Rev. Fluids
6
,
104002
(
2021
).
22.
A. A.
Saha
and
S. K.
Mitra
, “
Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow
,”
J. Colloid Interface Sci.
339
,
461
480
(
2009
).
23.
S. H.
Davis
, “
Moving contact lines and rivulet instabilities. Part 1. The static rivulet
,”
J. Fluid Mech.
98
,
225
242
(
1980
).
24.
L. M.
Hocking
, “
The damping of capillary-gravity waves at a rigid boundary
,”
J. Fluid Mech.
179
,
253
266
(
1987
).
25.
J. B.
Bostwick
and
P. H.
Steen
, “
Dynamics of sessile drops. Part 1. Inviscid theory
,”
J. Fluid Mech.
760
,
5
38
(
2014
).
26.
J.
Zhang
,
P.
Wang
,
M. K.
Borg
,
J. M.
Reese
, and
D.
Wen
, “
A critical assessment of the line tension determined by the modified Young's equation
,”
Phys. Fluids
30
,
082003
(
2018
).
27.
W.
Ren
,
D.
Hu
, and
W.
E
, “
Continuum models for the contact line problem
,”
Phys. Fluids
22
,
102103
(
2010
).
28.
H.
Liu
,
J.
Zhang
,
P.
Capobianchi
,
M. K.
Borg
,
Y.
Zhang
, and
D.
Wen
, “
A multiscale volume of fluid method with self-consistent boundary conditions derived from molecular dynamics
,”
Phys. Fluids
33
,
062004
(
2021
).
29.
G.
Amberg
, “
Detailed modelling of contact line motion in oscillatory wetting
,”
npj Microgravity
8
,
1
(
2022
).
30.
Y.
Xia
and
P. H.
Steen
, “
Moving contact-line mobility measured
,”
J. Fluid Mech.
841
,
767
783
(
2018
).
31.
J.
McCraney
,
V.
Kern
,
J.
Bostwick
,
S.
Daniel
, and
P.
Steen
, “
Oscillations of drops with mobile contact lines on the International Space Station: Elucidation of terrestrial inertial droplet spreading
,”
Phys. Rev. Lett.
129
,
084501
(
2022
).
32.
M. M.
Weislogel
and
J.
McCraney
, “
The symmetric draining of capillary liquids from containers with interior corners
,”
J. Fluid Mech.
859
,
902
920
(
2019
).
33.
J.
McCraney
,
M.
Weislogel
, and
P.
Steen
, “
The draining of capillary liquids from containers with interior corners aboard the ISS
,”
npj Microgravity
7
,
45
(
2021
).
34.
J.
Canny
, “
A computational approach to edge detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-8
,
679
698
(
1986
).
35.
C.
Kunkelmann
, “
Numerical modeling and investigation of boiling phenomena
,” Ph.D. thesis (
Technische Universität
,
2011
).
36.
J.
Wasserfall
,
P.
Figueiredo
,
R.
Kneer
,
W.
Rohlfs
, and
P.
Pischke
, “
Coalescence-induced droplet jumping on superhydrophobic surfaces: Effects of droplet mismatch
,”
Phys. Rev. Fluids
2
,
123601
(
2017
).
37.
J.
Eggers
,
J. R.
Lister
, and
H. A.
Stone
, “
Coalescence of liquid drops
,”
J. Fluid Mech.
401
,
293
310
(
1999
).
38.
W.
Ristenpart
,
P.
McCalla
,
R.
Roy
, and
H. A.
Stone
, “
Coalescence of spreading droplets on a wettable substrate
,”
Phys. Rev. Lett.
97
,
064501
(
2006
).
39.
A.
Menchaca-Rocha
,
A.
Martínez-Dávalos
,
R.
Nunez
,
S.
Popinet
, and
S.
Zaleski
, “
Coalescence of liquid drops by surface tension
,”
Phys. Rev. E
63
,
046309
(
2001
).
40.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Mater. Res.
38
,
71
99
(
2008
).
You do not currently have access to this content.