This paper numerically studies the flow dynamics of aerial undulation of a snake-like model, which is adapted from the kinematics of the flying snake (Chrysopelea) undergoing a gliding process. The model applies aerial undulation periodically in a horizontal plane where a range of angle of attack (AOA) is assigned to model the real gliding motion. The flow is simulated using an immersed-boundary-method-based incompressible flow solver. Local mesh refinement mesh blocks are implemented to ensure the grid resolutions around the moving body. Results show that the undulating body produces the maximum lift at 45° of AOA. Vortex dynamics analysis has revealed a series of vortex structures including leading-edge vortices (LEV), trailing-edge vortices, and tip vortices around the body. Changes in other key parameters including the undulation frequency and Reynolds number are also found to affect the aerodynamics of the studied snake-like model, where increasing of undulation frequency enhances vortex steadiness and increasing of Reynolds number enhances lift production due to the strengthened LEVs. This study represents the first study of both the aerodynamics of the whole body of the snake as well as its undulatory motion, providing a new basis for investigating the mechanics of elongated flexible flyers.

1.
J. J.
Socha
,
F.
Jafari
,
Y.
Munk
, and
G.
Byrnes
, “
How animals glide: rom trajectory to morphology
,”
Can. J. Zool.
93
(
12
),
901
924
(
2015
).
2.
R.
Dudley
,
G.
Byrnes
,
S. P.
Yanoviak
,
B.
Borrell
,
R. M.
Brown
, and
J. A.
McGuire
, “
Gliding and the functional origins of flight: biomechanical novelty or necessity?
,”
Annu. Rev. Ecol., Evol., Syst.
38
,
179
201
(
2007
).
3.
K.
Miklasz
,
M.
LaBarbera
,
X.
Chen
, and
J. J.
Socha
, “
Effects of body cross-sectional shape on flying snake aerodynamics
,”
Exp. Mech.
50
(
9
),
1335
1348
(
2010
).
4.
D.
Holden
,
J. J.
Socha
,
N. D.
Cardwell
, and
P. P.
Vlachos
, “
Aerodynamics of the flying snake Chrysopelea paradisi: How a bluff body cross-sectional shape contributes to gliding performance
,”
J. Exp. Biol.
217
(
3
),
382
394
(
2014
).
5.
A.
Krishnan
,
J.
Socha
,
P.
Vlachos
, and
L.
Barba
, “
Lift and wakes of flying snakes
,”
Phys. Fluids
26
(
3
),
031901
(
2014
).
6.
F.
Jafari
,
D.
Holden
,
R.
LaFoy
,
P. P.
Vlachos
, and
J. J.
Socha
, “
The aerodynamics of flying snake airfoils in tandem configuration
,”
J. Exp. Biol.
224
(
14
),
jeb233635
(
2021
).
7.
J. J.
Socha
,
T.
O'Dempsey
, and
M.
LaBarbera
, “
A 3D kinematic analysis of gliding in a flying snake, Chrysopelea paradisi
,”
J. Exp. Biol.
208
(
10
),
1817
1833
(
2005
).
8.
J. J.
Socha
, “
Gliding flight in Chrysopelea: Turning a snake into a wing
,”
Integr. Comp. Biol.
51
(
6
),
969
982
(
2011
).
9.
I. J.
Yeaton
,
S. D.
Ross
,
G. A.
Baumgardner
, and
J. J.
Socha
, “
Undulation enables gliding in flying snakes
,”
Nat. Phys.
16
(
9
),
974
982
(
2020
).
10.
C.
Ellington
,
C.
van den Berg
,
A.
Willmott
, and
A.
Thomas
, “
Leading-edge vortices in insect flight
,”
Nature
384
(
6610
),
626
630
(
1996
).
11.
M. H.
Dickinson
and
K. G.
Gotz
, “
Unsteady aerodynamic performance of model wings at low Reynolds numbers
,”
J. Exp. Biol.
174
(
1
),
45
64
(
1993
).
12.
S. S.
Bhat
et al., “
Uncoupling the effects of aspect ratio, Reynolds number and Rossby number on a rotating insect-wing planform
,”
J. Fluid Mech.
859
,
921
948
(
2019
).
13.
J. D.
Eldredge
and
A. R.
Jones
, “
Leading-edge vortices: Mechanics and modeling
,”
Annu. Rev. Fluid Mech.
51
,
75
104
(
2019
).
14.
P.
Mancini
,
F.
Manar
,
K.
Granlund
,
M. V.
Ol
, and
A. R.
Jones
, “
Unsteady aerodynamic characteristics of a translating rigid wing at low Reynolds number
,”
Phys. Fluids
27
(
12
),
123102
(
2015
).
15.
F.
Manar
,
P.
Mancini
,
D.
Mayo
, and
A. R.
Jones
, “
Comparison of rotating and translating wings: Force production and vortex characteristics
,”
AIAA J.
54
(
2
),
519
530
(
2016
).
16.
K. K.
Chen
,
T.
Colonius
, and
K.
Taira
, “
The leading-edge vortex and quasi-steady vortex shedding on an accelerating plate
,”
Phys. Fluids
22
(
3
),
033601
033611
(
2010
).
17.
D. J.
Garmann
and
M. R.
Visbal
, “
Dynamics of revolving wings for various aspect ratios
,”
J. Fluid Mech.
748
(
3
),
932
956
(
2014
).
18.
J. R.
Usherwood
and
C. P.
Ellington
, “
The aerodynamics of revolving wings. I. Model hawkmoth wings
,”
J. Exp. Biol.
205
,
1547
1564
(
2002
).
19.
A. C.
DeVoria
and
M. J.
Ringuette
, “
Vortex formation and saturation for low-aspect-ratio rotating flat-plate fins
,”
Exp. Fluids
52
(
2
),
441
462
(
2012
).
20.
C. J.
Wojcik
and
J. H. J.
Buchholz
, “
Vorticity transport in the leading-edge vortex on a rotating blade
,”
J. Fluid Mech.
743
,
249
261
(
2014
).
21.
K. O.
Granlund
,
M. V.
Ol
, and
L. P.
Bernal
, “
Unsteady pitching flat plates
,”
J. Fluid Mech.
733
,
R5
(
2013
).
22.
M. R.
Visbal
, “
Unsteady flow structure and loading of a pitching low-aspect-ratio wing
,”
Phys. Rev. Fluids
2
,
024703
(
2017
).
23.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
F. M.
Najjar
,
A.
Vargas
, and
A.
von Loebbecke
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
(
10
),
4825
4852
(
2008
).
24.
A. T.
Bode-Oke
,
S.
Zeyghami
, and
H.
Dong
, “
Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight
,”
J. R. Soc. Interface
15
(
143
),
20180102
(
2018
).
25.
A. T.
Bode-Oke
,
S.
Zeyghami
, and
H.
Dong
, “
Aerodynamics and flow features of a damselfly in takeoff flight
,”
Bioinspiration Biomimetics
12
(
5
),
056006
(
2017
).
26.
Y.
Ren
,
H.
Dong
,
X.
Deng
, and
B.
Tobalske
, “
Turning on a dime: Asymmetric vortex formation in hummingbird maneuvering flight
,”
Phys. Rev. Fluids
1
(
5
),
050511
(
2016
).
27.
P.
Han
,
G. V.
Lauder
, and
H.
Dong
, “
Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement
,”
Phys. Fluids
32
(
1
),
011902
(
2020
).
28.
J.
Wang
,
D. K.
Wainwright
,
R. E.
Lindengren
,
G. V.
Lauder
, and
H.
Dong
, “
Tuna locomotion: a computational hydrodynamic analysis of finlet function
,”
J. R. Soc. Interface
17
(
165
),
20190590
(
2020
).
29.
A.
Menzer
 et al., “
Bio-inspired propulsion: Towards understanding the role of pectoral fin kinematics in Manta-like swimming
,”
Biomimetics
7
(
2
),
45
(
2022
).
30.
Y.
Pan
and
H.
Dong
, “
Computational analysis of hydrodynamic interactions in a high-density fish school
,”
Phys. Fluids
32
(
12
),
121901
(
2020
).
31.
J.
Wang
,
J.
Xi
,
P.
Han
,
N.
Wongwiset
,
J.
Pontius
, and
H.
Dong
, “
Computational analysis of a flapping uvula on aerodynamics and pharyngeal wall collapsibility in sleep apnea
,”
J. Biomech.
94
,
88
98
(
2019
).
32.
W.
Zhang
,
Y.
Pan
,
Y.
Gong
,
H.
Dong
, and
J.
Xi
, “
A versatile IBM-based AMR method for studying human snoring
,” in
Fluids Engineering Division Summer Meeting
(
American Society of Mechanical Engineers
,
2021
), Vol.
85284
, p.
V001T02A039
.
33.
Y.
Gong
,
J.
Wang
,
J.
Socha
, and
H.
Dong
, “
Aerodynamics and flow characteristics of flying snake gliding with undulating locomotion
,” AIAA Paper No. 2022-1054,
2022
.
34.
P. C.
Khandelwal
and
T. L.
Hedrick
, “
Combined effects of body posture and three-dimensional wing shape enable efficient gliding in flying lizards
,”
Sci. Rep.
12
(
1
),
1
11
(
2022
).
35.
C.
Wang
 et al., “
Optimal reduced frequency for the power efficiency of a flat plate gliding with spanwise oscillations
,”
Phys. Fluids
33
(
11
),
111908
(
2021
).
36.
C.
Li
,
H.
Dong
, and
B.
Cheng
, “
Tip vortices formation and evolution of rotating wings at low Reynolds numbers
,”
Phys. Fluids
32
(
2
),
021905
(
2020
).
37.
J.
Wang
,
Y.
Ren
,
C.
Li
, and
H.
Dong
, “
Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight
,”
Bioinspiration Biomimetics
14
(
4
),
046010
(
2019
).
38.
S.
Vogel
, Life in Moving Fluids: The Physical Biology of Flow, rev. expanded 2nd ed. (Princeton University Press,
2020
).
39.
J. J.
Socha
,
K.
Miklasz
,
F.
Jafari
, and
P. P.
Vlachos
, “
Non-equilibrium trajectory dynamics and the kinematics of gliding in a flying snake
,”
Bioinspiration Biomimetics
5
(
4
),
045002
(
2010
).

Supplementary Material

You do not currently have access to this content.