Numerical simulations of multiphase flows with both interfaces and discrete particles are challenging because they possess a wide range of length and time scales. Meanwhile, the volume of fluid (VOF) method is suitable for resolving the interface, while the discrete particle model (DPM) under the Lagrangian frame better simulates unresolvable particles; a multiscale VOF–DPM combined model is urgently needed for multiscale multiphase flows. The present work implements a VOF–DPM solver that includes a two-way transition algorithm to model the transformation between discrete and continuous phases for bubbles or droplets using OpenFOAM. The interface-capturing scheme in the solver is based on the interIsoFoam solver, which supports the geometric reconstruction of the interface and adaptive mesh refinement. A connected component labeling approach is used for particle detection and VOF-to-DPM transition for discrete bubbles or droplets produced by interface breakup. Conversely, a DPM-to-VOF transition algorithm for particles touching the interface is incorporated to achieve a two-way transition. In addition, phase change modeling between continuous phases and bubble dynamic modeling for cavitating flow cases are also implemented in the solver. Test simulations are performed for validation, including the gas–liquid two-phase dam break and cavitating flow in a convergent–divergent test section. The results demonstrate that the solver is reasonably accurate and can adequately represent the complex phase structure, including the interface and discrete particles.

1.
L.
Li
,
X.
Li
,
Z.
Zhu
, and
B.
Li
, “
Numerical modeling of multiphase flow in gas stirred ladles: From a multiscale point of view
,”
Powder Technol.
373
,
14
25
(
2020
).
2.
X.
Sun
and
M.
Sakai
, “
Three-dimensional simulation of gas–solid–liquid flows using the DEM–VOF method
,”
Chem. Eng. Sci.
134
,
531
548
(
2015
).
3.
Y.
Liao
,
Q.
Wang
,
U.
Caliskan
, and
S.
Miskovi
, “
Investigation of particle effects on bubble coalescence in slurry with a chimera MP-PIC and VOF coupled method
,”
Chem. Eng. Sci.
265
,
118174
(
2023
).
4.
OpenFOAM
, see www.openfoam.com for “
The open source CFD toolbox
” (
2022
).
5.
L.
Li
and
B.
Li
, “
Implementation and validation of a volume-of-fluid and discrete-element-method combined solver in OpenFOAM
,”
Particuology
39
,
109
115
(
2018
).
6.
G.
Pozzetti
and
B.
Peters
, “
A multiscale DEM-VOF method for the simulation of three-phase flows
,”
Int. J. Multiphase Flow
99
,
186
204
(
2018
).
7.
F.
Abbas
,
B.
Wang
,
M. J.
Cleary
, and
A. R.
Masri
, “
Numerical convergence of volume of fluid based large eddy simulations of atomizing sprays
,”
Phys. Fluids
33
,
042119
(
2021
).
8.
J.
Poblador-Ibanez
and
W. A.
Sirignano
, “
A volume-of-fluid method for variable-density, two-phase flows at supercritical pressure
,”
Phys. Fluids
34
,
053321
(
2022
).
9.
M.
Sussmann
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J Comput. Phys.
114
,
146
159
(
1994
).
10.
P. H. N.
Pimenta
and
T. F.
Oliveira
, “
Study on the rheology of a dilute emulsion of surfactant-covered droplets using the level set and closest point methods
,”
Phys. Fluids
33
,
103306
(
2021
).
11.
M.
Hermann
, “
A parallel Eulerian interface tracking/Lagrangian point particle multiscale coupling procedure
,”
J Comput. Phys.
229
,
745
759
(
2010
).
12.
W.
Edelbauer
,
F.
Birkhold
,
T.
Rankel
,
Z.
Pavlovic
, and
P.
Kolar
, “
Simulation of the liquid breakup at an AdBlue injector with the volume-of-fluid method followed by off-line coupled Lagrangian particle tracking
,”
Comput. Fluids
157
,
294
311
(
2017
).
13.
H.
Yu
,
Y. C.
Jin
,
W.
Cheng
,
X.
Yang
,
X.
Peng
, and
Y.
Xie
, “
Multiscale simulation of atomization process and droplet particles diffusion of pressure-swirl nozzle
,”
Powder Technol.
379
,
127
143
(
2021
).
14.
Y.
Ling
,
S.
Zaleski
, and
R.
Scardovelli
, “
Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model
,”
Int. J. Multiphase Flow
76
,
122
143
(
2015
).
15.
M. D.
Martino
,
D.
Ahirwal
, and
P. L.
Maffettone
, “
Computational fluid dynamics characterization of the hollow-cone atomization: Newtonian and non-Newtonian spray comparison
,”
Phys. Fluids
34
,
093318
(
2022
).
16.
V. B.
Nguyen
,
Q. V.
Do
, and
V. S.
Pham
, “
An OpenFOAM solver for multiphase and turbulent flow
,”
Phys. Fluids
32
,
043303
(
2020
).
17.
R.
Janodet
,
C.
Guillamón
,
V.
Moureau
,
R.
Mercier
,
G.
Lartigue
,
P.
Bénard
,
T.
Ménard
, and
A.
Berlemont
, “
A massively parallel accurate conservative level set algorithm for simulating turbulent atomization on adaptive unstructured grids
,”
J. Comput. Phys.
458
,
111075
(
2022
).
18.
W.
Jin
,
J.
Xiao
,
H.
Ren
,
C.
Li
,
Q.
Zheng
, and
Z.
Tong
, “
Three-dimensional simulation of impinging jet atomization of soft mist inhalers using the hybrid VOF-DPM model
,”
Powder Technol.
407
,
117622
(
2022
).
19.
X.
Sun
,
H.
Yan
, and
F.
Chen
, “
Numerical investigation of atomization of swirling liquid sheets using transforming algorithm
,”
Int. J. Multiphase Flow
152
,
104084
(
2022
).
20.
L.
Li
,
B.
Li
, and
Z.
Liu
, “
Modeling of gas-steel-slag three-phase flow in ladle metallurgy: Part II. Multiscale mathematical model
,”
ISIJ Int.
57
,
1980
1989
(
2017
).
21.
L.
Li
,
W.
Ding
,
F.
Xue
,
C.
Xu
, and
B.
Li
, “
Multiscale mathematical model with discrete–continuum transition for gas–liquid–slag three-phase flow in gas-stirred ladles
,”
JOM
70
,
2900
2908
(
2018
).
22.
R. F. L.
Cerqueira
,
E. E.
Paladino
,
F.
Evrard
,
F.
Denner
, and
B.
van Wachem
, “
Multiscale modeling and validation of the flow around Taylor bubbles surrounded with small dispersed bubbles using a coupled VOF-DBM approach
,”
Int. J. Multiphase Flow
141
,
103673
(
2021
).
23.
J.
Ma
,
C. T.
Hsiao
, and
G. L.
Chahine
, “
A physics based multiscale modeling of cavitating flows
,”
Comput. Fluids
145
,
68
84
(
2017
).
24.
C. T.
Hsiao
,
J.
Ma
, and
G. L.
Chahine
, “
Multiscale two-phase flow modeling of sheet and cloud cavitation
,”
Int. J. Multiphase Flow
90
,
102
117
(
2017
).
25.
L.
Li
,
Z.
Wang
,
X.
Li
,
Y.
Wang
, and
Z.
Zhu
, “
Very large eddy simulation of cavitation from inception to sheet/cloud regimes by a multiscale model
,”
China Ocean Eng.
35
,
361
371
(
2021
).
26.
L.
Li
,
Z.
Wang
,
X.
Li
, and
Z.
Zhu
, “
Multiscale modeling of tip-leakage cavitating flows by a combined volume of fluid and discrete bubble model
,”
Phys Fluids
33
,
062104
(
2021
).
27.
L.
Li
,
Y.
Huo
,
Z.
Wang
,
X.
Li
, and
Z.
Zhu
, “
Large eddy simulation of tip-leakage cavitating flow using a multiscale cavitation model and investigation on model parameters
,”
Phys Fluids
33
,
092104
(
2021
).
28.
A.
Vallier
, “
Simulations of cavitation-from the large vapour structure to the small bubble dynamics
,” Doctoral dissertation (
Lund University
,
2013
).
29.
E.
Ghahramani
,
H.
Ström
, and
R. E.
Bensow
, “
Numerical simulation and analysis of multiscale cavitating flows
,”
J. Fluid Mech.
922
,
A22
(
2021
).
30.
A.
Peters
and
O.
Moctar
, “
Numerical assessment of cavitation-induced erosion using a multiscale Euler–Lagrange method
,”
J. Fluid Mech.
894
,
A19
(
2020
).
31.
Z.
Wang
,
H.
Cheng
, and
B.
Ji
, “
Numerical prediction of cavitation erosion risk in an axisymmetric nozzle using a multiscale approach
,”
Phys. Fluids
34
,
062112
(
2022
).
32.
I.
Morev
,
B.
Tekgül
,
M.
Gadalla
,
A.
Shahanaghi
,
J.
Kannan
,
S.
Karimkashi
,
O.
Kaario
, and
V.
Vuorinen
, “
Fast reactive flow simulations using analytical Jacobian and dynamic load balancing in OpenFOAM
,”
Phys. Fluids
34
,
021801
(
2022
).
33.
F.
Duronio
,
S.
Ranieri
,
A. D.
Mascio
, and
A. D.
Vita
, “
Simulation of high pressure, direct injection processes of gaseous fuels by a density-based OpenFOAM solver
,”
Phys. Fluids
33
,
066104
(
2021
).
34.
A.
Spitzenberger
,
S.
Neumann
,
M.
Heinrich
, and
R.
Schwarze
, “
Particle detection in VOF-simulations with OpenFOAM
,”
SoftwareX
11
,
100382
(
2020
).
35.
M.
Heinrich
and
R.
Schwarze
, “
3D-coupling of Volume-of-Fluid and Lagrangian particle tracking for spray atomization simulation in OpenFOAM
,”
SoftwareX
11
,
100483
(
2020
).
36.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
37.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
38.
L.
Li
,
D.
Hu
,
Y.
Liu
,
B.
Wang
,
C.
Shi
,
J.
Shi
, and
C.
Xu
, “
Large eddy simulation of cavitating flows with dynamic adaptive mesh refinement using OpenFOAM
,”
J. Hydrodyn.
32
,
398
409
(
2020
).
39.
L.
Schiller
and
Z.
Naumann
, “
A drag coefficient correlation
,”
VDI Zeitung
77
,
318
320
(
1935
).
40.
R. F.
Kunz
,
D. A.
Boger
,
D. R.
Stinebring
,
T. S.
Chyczewski
,
J. W.
Lindau
,
H. J.
Gibeling
,
S.
Venkateswaran
, and
T. R.
Govindan
, “
A preconditioned implicit method for two-phase flows with application to cavitation prediction
,”
Comput. Fluids
29
,
849
875
(
2000
).
41.
C. L.
Merkle
,
J.
Feng
, and
P. E. O.
Buelow
, “
Computational modeling of the dynamics of sheet cavitation
,” in
Third International Symposium on Cavitation
, Grenoble, France,
1998
.
42.
G. H.
Schnerr
and
J.
Sauer
, “
Physical and numerical modeling of unsteady cavitation dynamics
,” in
4th International Conference on Multiphase Flow
, New Orleans,
2021
.
43.
H.
Scheufler
and
J.
Roenby
, “
Accurate and efficient surface reconstruction from volume fraction data on general meshes
,”
J. Comput. Phys.
383
,
1
23
(
2019
).
44.
J.
Roenby
,
H.
Bredmose
, and
H.
Jasak
, “
A computational method for sharp interface advection
,”
R Soc. Open Sci.
3
,
160405
(
2016
).
45.
S. S.
Bhat
,
A.
Silvestri
,
B. S.
Cazzolato
, and
M.
Arjomandi
, “
Mechanism of control of the near-wall turbulence using a micro-cavity array
,”
Phys. Fluids
33
,
075114
(
2021
).
46.
Y.
Guan
,
S.
Wu
,
M.
Wang
,
Y.
Tian
,
W.
Lai
, and
Y.
Huang
, “
Numerical analysis of electrohydrodynamic jet printing under constant and step change of electric voltages
,”
Phys. Fluids
34
,
062005
(
2022
).
47.
W.
Meng
,
L.
Liao
,
C. H.
Yu
,
J.
Li
, and
R.
An
, “
Eulerian–Eulerian multiphase models for simulating collapse of submarine sediment column with rheological characteristics in air–water flow
,”
Phys. Fluids
33
,
113301
(
2021
).
48.
X.
Wu
,
E.
Maheux
, and
G. L.
Chahine
, “
An experimental study of sheet to cloud cavitation
,”
Exp. Therm. Fluid Sci.
83
,
129
140
(
2017
).
49.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
,
183
200
(
1999
).
You do not currently have access to this content.