Two separate experimental campaigns of a spatially developing turbulent boundary layer under approximately zero-pressure-gradient at moderate Reynolds numbers (1700<Reθ<3400) are conducted with stereoscopic Particle Image Velocimetry (PIV) and one component Hot Wire Anemometry. This range of Reynolds numbers is found to be of particular interest for turbulent boundary layer control investigations. The motivations behind this work rely on the lack of recent studies that provide a rigorous experimental database on a flat plate turbulent boundary layer, openly available online. This is critical as, in most of the cases, the modification of the statistics resulting from turbulent boundary layer control strategies are compared with a smooth baseline reference. The statistics of the velocity fields, obtained with the two techniques, show a good match with the direct numerical simulation in literature results. We focused on the skin friction evaluation by means of Clauser's chart technique. The near wall turbulence activity and the associated coherent structures are investigated by means of the Variable Interval Time Averaging technique using the hot wire signal. The influence of the acquisition and algorithm parameters as well as the effect of the Reynolds number are reported. The logarithmic and outer structures are investigated by applying the Uniform Momentum Zones technique to the PIV dataset. The hierarchical distribution of the uniform momentum zones as a function of the wall distance as well as their variation with the Reynolds number confirm the validity of the attached eddy model even at the moderate Reynolds numbers of the current investigation.

1.
Adrian
,
R. J.
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
(
4
),
041301
(
2007
).
2.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
3.
Blackwelder
,
R. F.
and
Kaplan
,
R. E.
, “
On the wall structure of the turbulent boundary layer
,”
J. Fluid Mech.
76
(
1
),
89
112
(
1976
).
4.
Cafiero
,
G.
and
Iuso
,
G.
, “
Drag reduction in a turbulent boundary layer with sinusoidal riblets
,”
Exp. Therm. Fluid Sci.
139
,
110723
(
2022
).
5.
Chanetz
,
B.
,
Délery
,
J.
,
Gilliéron
,
P.
,
Gnemmi
,
P.
,
Gowree
,
E.
, and
Perrier
,
P.
,
Experimental Aerodynamics - An Introductory Guide
(
Springer Cham
,
2020
).
6.
Chauhan
,
K.
,
Philip
,
J.
,
de Silva
,
C. M.
,
Hutchins
,
N.
, and
Marusic
,
I.
, “
The turbulent/non-turbulent interface and entrainment in a boundary layer
,”
J. Fluid Mech.
742
,
119
151
(
2014
).
7.
Cui
,
G.
,
Pan
,
C.
,
Wu
,
D.
,
Ye
,
Q.
, and
Wang
,
J.
, “
Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer
,”
Chin. J. Aeronaut.
32
(
11
),
2433
2442
(
2019
).
8.
de Giovanetti
,
M.
,
Hwang
,
Y.
, and
Choi
,
H.
, “
Skin-friction generation by attached eddies in turbulent channel flow
,”
J. Fluid Mech.
808
,
511
538
(
2016
).
9.
de Silva
,
C. M.
,
Hutchins
,
N.
, and
Marusic
,
I.
, “
Uniform momentum zones in turbulent boundary layers
,”
J. Fluid Mech.
786
,
309
331
(
2016
).
10.
Du
,
H.
,
Li
,
Q.
,
Zhang
,
Q.
,
Zhang
,
W.
, and
Yang
,
L.
, “
Experimental study on drag reduction of the turbulent boundary layer via porous media under nonzero pressure gradient
,”
Phys. Fluids
34
(
2
),
025110
(
2022
).
11.
Fukagata
,
K.
,
Iwamoto
,
K.
, and
Kasagi
,
N.
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
(
11
),
L73
L76
(
2002
).
12.
George
,
W. K.
, “
Is there a universal log law for turbulent wall-bounded flows?
,”
Philos. Trans. R Soc., A
365
(
1852
),
789
806
(
2007
).
13.
Gowree
,
E.
,
Atkin
,
C.
, and
Gruppetta
,
S.
, “
A simple digital-optical system to improve accuracy of hot-wire measurements
,”
Meas. Sci. Technol.
26
,
095303
(
2015
).
14.
Gowree
,
E.
,
Jagadeesh
,
C.
, and
Atkin
,
C.
, “
Skin friction drag reduction over staggered three dimensional cavities
,”
Aerosp. Sci. Technol.
84
,
520
529
(
2019
).
15.
Heisel
,
M.
,
de Silva
,
C. M.
,
Hutchins
,
N.
,
Marusic
,
I.
, and
Guala
,
M.
, “
On the mixing length eddies and logarithmic mean velocity profile in wall turbulence
,”
J. Fluid Mech.
887
,
R1
(
2020
).
16.
Hutchins
,
N.
and
Choi
,
K.-S.
, “
Accurate measurements of local skin friction coefficient using hot-wire anemometry
,”
Prog. Aerosp. Sci.
38
(
4
),
421
446
(
2002
).
17.
Hutchins
,
N.
and
Marusic
,
I.
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R Soc., A
365
(
1852
),
647
664
(
2007
).
18.
Hwang
,
Y.
, “
Near-wall turbulent fluctuations in the absence of wide outer motions
,”
J. Fluid Mech.
723
,
264
288
(
2013
).
19.
Jacob
,
M. C.
,
Jondeau
,
E.
, and
Li
,
B.
, “
Time-resolved PIV measurements of a tip leakage flow
,”
Int. J. Aeroacoust.
15
(
6–7
),
662
685
(
2016
).
20.
Jafari
,
A.
,
Cazzolato
,
B.
, and
Arjomandi
,
M.
, “
Finite-length porous surfaces for control of a turbulent boundary layer
,”
Phys. Fluids
34
(
4
),
045115
(
2022
).
21.
Jiménez
,
J.
and
Pinelli
,
A.
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
22.
Jørgensen
,
F.
,
How to measure turbulence with hot-wire anemometers – A practical guide
(
Dantec Dynamics
,
2001
).
23.
Kendall
,
A.
and
Koochesfahani
,
M.
, “
A method for estimating wall friction in turbulent wall-bounded flows
,”
Exp. Fluids
44
,
773
780
(
2008
).
24.
Kim
,
H. T.
,
Kline
,
S. J.
, and
Reynolds
,
W. C.
, “
The production of turbulence near a smooth wall in a turbulent boundary layer
,”
J. Fluid Mech.
50
(
1
),
133
160
(
1971
).
25.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
(
4
),
741
773
(
1967
).
26.
Li
,
W.
,
Roggenkamp
,
D.
,
Paakkari
,
V.
,
Klaas
,
M.
,
Soria
,
J.
, and
Schroder
,
W.
, “
Analysis of a drag reduced flat plate turbulent boundary layer via uniform momentum zones
,”
Aerosp. Sci. Technol.
96
,
105552
(
2020
).
27.
Marusic
,
I.
and
Monty
,
J. P.
, “
Attached eddy model of wall turbulence
,”
Annu. Rev. Fluid Mech.
51
(
1
),
49
74
(
2019
).
28.
Mathis
,
R.
,
Hutchins
,
N.
, and
Marusic
,
I.
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
337
(
2009
).
29.
Meinhart
,
C. D.
and
Adrian
,
R. J.
, “
On the existence of uniform momentum zones in a turbulent boundary layer
,”
Phys. Fluids
7
(
4
),
694
696
(
1995
).
30.
Örlü
,
R.
and
Alfredsson
,
P.-H.
, “
On spatial resolution issues related to time-averaged quantities using hot-wire anemometry
,”
Exp. Fluids
49
,
101
110
(
2010
).
31.
Patel
,
V. C.
, “
Calibration of the Preston tube and limitations on its use in pressure gradients
,”
J. Fluid Mech.
23
(
1
),
185
208
(
1965
).
32.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
33.
Rao
,
K. N.
,
Narasimha
,
R.
, and
Narayanan
,
M. A. B.
, “
The ‘bursting’ phenomenon in a turbulent boundary layer
,”
J. Fluid Mech.
48
(
2
),
339
352
(
1971
).
34.
Renard
,
N.
and
Deck
,
S.
, “
A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
,”
J. Fluid Mech.
790
,
339
367
(
2016
).
35.
Robinson
,
S. K.
, “
Coherent motions in the turbulent boundary layer
,”
Annu. Rev. Fluid Mech.
23
(
1
),
601
639
(
1991
).
36.
Scarano
,
F.
,
Jacob
,
M. C.
,
Gojon
,
R.
,
Carbonneau
,
X.
, and
Gowree
,
E. R.
, “
Modification of a turbulent boundary layer by circular cavities
,”
Phys. Fluids
34
(
6
),
065134
(
2022
).
37.
Schlatter
,
P.
and
Orlu
,
R.
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid Mech.
659
,
116
126
(
2010
).
38.
Schlatter
,
P.
,
Örlü
,
R.
,
Li
,
Q.
,
Brethouwer
,
G.
,
Fransson
,
J. H. M.
,
Johansson
,
A. V.
,
Alfredsson
,
P. H.
, and
Henningson
,
D. S.
, “
Turbulent boundary layers up to reθ=2500 studied through simulation and experiment
,”
Phys. Fluids
21
(
5
),
051702
(
2009
).
39.
Sciacchitano
,
A.
, “
Uncertainty quantification in particle image velocimetry
,”
Meas. Sci. Technol.
30
,
092001
(
2019
).
40.
Sciacchitano
,
A.
and
Wieneke
,
B.
, “
Piv uncertainty propagation
,”
Meas. Sci. Technol.
27
,
084006
(
2016
).
41.
Senthil
,
S.
,
Kitsios
,
V.
,
Sekimoto
,
A.
,
Atkinson
,
C.
, and
Soria
,
J.
, “
Analysis of the factors contributing to the skin friction coefficient in adverse pressure gradient turbulent boundary layers and their variation with the pressure gradient
,”
Int. J. Heat Fluid Flow
82
,
108531
(
2020
).
42.
Severino
,
G. F.
,
Silvestri
,
A.
,
Cazzolato
,
B. S.
, and
Arjomandi
,
M.
, “
Sensitivity analysis of orifice length of micro-cavity array for the purpose of turbulence attenuation
,”
Exp. Fluids
63
(
1
),
24
(
2022
).
43.
Silvestri
,
A.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
,
Cazzolato
,
B.
, and
Zander
,
A.
, “
Attenuation of sweep events in a turbulent boundary layer using micro-cavities
,”
Exp. Fluids
58
,
58
(
2017
).
44.
Silvestri
,
A.
,
Ghanadi
,
F.
,
Arjomandi
,
M.
,
Cazzolato
,
B.
,
Zander
,
A.
, and
Chin
,
R.
, “
Mechanism of sweep event attenuation using micro-cavities in a turbulent boundary layer
,”
Phys. Fluids
30
(
5
),
055108
(
2018
).
45.
Sullivan
,
P.
and
Pollard
,
A.
, “
Coherent structure identification from the analysis of hot-wire data
,”
Meas. Sci. Technol.
7
(
10
),
1498
1516
(
1996
).
46.
Thavamani
,
A.
,
Cuvier
,
C.
,
Willert
,
C.
,
Foucaut
,
J.
,
Atkinson
,
C.
, and
Soria
,
J.
, “
Characterisation of uniform momentum zones in adverse pressure gradient turbulent boundary layers
,”
Exp. Therm. Fluid Sci.
115
,
110080
(
2020
).
47.
Townsend
,
A. A.
, “
The structure of the turbulent boundary layer
,”
Math. Proc. Cambridge Philos. Soc.
47
(
2
),
375
395
(
1951
).
48.
Wallace
,
J. M.
, “
Quadrant analysis in turbulence research: History and evolution
,”
Annu. Rev. Fluid Mech.
48
(
1
),
131
158
(
2016
). 122414-034550.
49.
Wei
,
T.
,
Schmidt
,
R.
, and
Mcmurtry
,
P.
, “
Comment on the clauser chart method for determining the friction velocity
,”
Exp. Fluids
38
,
695
699
(
2005
).
50.
Womack
,
K. M.
,
Meneveau
,
C.
, and
Schultz
,
M. P.
, “
Comprehensive shear stress analysis of turbulent boundary layer profiles
,”
J. Fluid Mech.
879
,
360
389
(
2019
).
51.
Zanoun
,
E.-S.
,
Durst
,
F.
, and
Nagib
,
H.
, “
Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows
,”
Phys. Fluids
15
(
10
),
3079
3089
(
2003
).
You do not currently have access to this content.