A precessing vortex core (PVC) is a self-excited helical instability that results from the precession of the vortex core around the flow axis in the upstream region of a vortex breakdown bubble. PVC oscillation in a swirl flow-based combustor aids the thermoacoustic instability that results in hardware damage and poor emission characteristics of the engine. The PVC oscillation can be suppressed intermittently or absolutely in the high shear injector-based combustor with proper design and placement of the fuel nozzle in the injector. A high shear injector is an arrangement of two radial swirlers in general, namely, primary and secondary swirlers, equipped with a fuel nozzle at its center to deliver the fuel. In this study, we examine the impact of the placement of the fuel nozzle/center-body and its design over the dynamics of PVC oscillations in a non-reacting flow in a counter-rotating swirler/high shear injector. Time-resolved high-speed (@ 5 kHz) stereoscopic particle image velocimetry measurements are conducted to elucidate the dynamics of PVC and other coherent structures. Spectral proper orthogonal decomposition of the velocity field data shows that fuel nozzle flushing with the base of the primary swirler has the most robust PVC oscillation that subsequently gets intermittent or suppressed by placing the center-body of diameters, Dc = 7, 9, and 11 mm at constant upstream mass flow rate. The results show that the center-body with the end face flushing to the exit plane would be helpful to avoid PVC with proper selection of the center-body diameter.

1.
C.
Brücker
, “
Study of vortex breakdown by particle tracking velocimetry (PTV)
,”
Exp. Fluids
14
,
133
(
1993
).
2.
T.
Sarpkaya
, “
Vortex breakdown in swirling conical flows
,”
AIAA J.
9
,
1792
(
1971
).
3.
F.
Gallaire
,
M.
Ruith
,
E.
Meiburg
,
J. M.
Chomaz
, and
P.
Huerre
, “
Spiral vortex breakdown as a global mode
,”
J. Fluid Mech.
549
,
71
(
2006
).
4.
D. H.
Peckham
and
S. A.
Atkinson
, “
Preliminary results of low speed wind tunnel tests on a gothic wing of aspect ratio 1.0
,” ARC Tech. Rep. CP Aero. 2504 (H.M. Stationery Office,
1957
).
5.
N. C.
Lambourne
and
D. W.
Bryer
, “
The bursting of leading-edge vortices: Some observations and discussion of the phenomenon
,” Aeronautical Research Council R. & M 3282 (H.M. Stationery Office,
1961
), pp.
1
36
.
6.
J. H.
Faler
and
S.
Leibovich
, “
An experimental map of the internal structure of a vortex breakdown
,”
J. Fluid Mech.
86
,
313
(
1978
).
7.
P.
Billant
,
J. M.
Chomaz
, and
P.
Huerre
, “
A numerical study of the sedimentation of fibre suspensions
,”
J. Fluid Mech.
376
,
183
(
1998
).
8.
A. K.
Gupta
,
D. G.
Lilley
, and
N.
Syred
,
Swirl Flows
(
Abacus Press
,
1984
).
9.
M. P.
Escudier
and
J. J.
Keller
, “
Recirculation in swirling flow: A manifestation of vortex breakdown
,”
AIAA J.
23
,
111
(
1985
).
10.
F.
Gallaire
,
S.
Rott
, and
J. M.
Chomaz
, “
Experimental study of a free and forced swirling jet
,”
Phys. Fluids
16
,
2907
(
2004
).
11.
H.
Liang
and
T.
Maxworthy
, “
An experimental investigation of swirling jets
,”
J. Fluid Mech.
525
,
115
(
2005
).
12.
M. R.
Ruith
,
P.
Chen
,
E.
Meiburg
, and
T.
Maxworthy
, “
Three-dimensional vortex breakdown in swirling jets and wakes: Direct numerical simulation
,”
J. Fluid Mech.
486
,
331
(
2003
).
13.
N.
Syred
, “
A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems
,”
Prog. Energy Combust. Sci.
32
,
93
(
2006
).
14.
K.
Oberleithner
,
M.
Sieber
,
C. N.
Nayeri
,
C. O.
Paschereit
,
C.
Petz
,
H. C.
Hege
,
B. R.
Noack
, and
I.
Wygnanski
, “
Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction
,”
J. Fluid Mech.
679
,
383
(
2011
).
15.
M.
Stöhr
,
C. M.
Arndt
, and
W.
Meier
, “
Transient effects of fuel–air mixing in a partially-premixed turbulent swirl flame
,”
Proc. Combust. Inst.
35
,
3327
(
2015
).
16.
U.
Stopper
,
W.
Meier
,
R.
Sadanandan
,
M.
Stöhr
,
M.
Aigner
, and
G.
Bulat
, “
Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape
,”
Combust. Flame
160
,
2103
(
2013
).
17.
T. C.
Lieuwen
and
V.
Yang
, “
Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling
,”
Prog. Astronaut. Aeronaut.
210
,
8
(
2005
).
18.
K.
Oberleithner
,
M.
Sieber
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
On the control of global modes in swirling jet experiments
,”
J. Phys.: Conf. Ser.
318
,
032050
(
2011
).
19.
K.
Manoharan
,
M.
Frederick
,
S.
Clees
,
J.
O'Connor
, and
S.
Hemchandra
, “
A weakly nonlinear analysis of the precessing vortex core oscillation in a variable swirl turbulent round jet
,”
J. Fluid Mech.
884
,
A29
(
2019
).
20.
P.
Palies
,
D.
Durox
,
T.
Schuller
, and
S.
Candel
, “
Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames
,”
Combust. Flame
158
,
1980
(
2011
).
21.
A.
Mukherjee
,
N.
Muthichur
,
C.
More
,
S.
Gupta
, and
S.
Hemchandra
, “
The role of the centerbody wake on the precessing vortex core dynamics of a swirl nozzle
,”
J. Eng. Gas Turbine Power
143
,
051019
(
2021
).
22.
S.
Gupta
,
S.
Shanbhogue
,
M.
Shimura
,
A.
Ghoniem
, and
S.
Hemchandra
, “
Impact of a centerbody on the unsteady flow dynamics of a swirl nozzle: Intermittency of precessing vortex core oscillations
,”
J. Eng. Gas Turbine Power
144
,
021014
(
2022
).
23.
T. L.
Kaiser
,
K.
Oberleithner
,
L.
Selle
, and
T.
Poinsot
, “
Examining the effect of geometry changes in industrial fuel injection systems on hydrodynamic structures with biglobal linear stability analysis
,”
J. Eng. Gas Turbine Power
142
,
011024
(
2020
).
24.
S.
Kumar
,
S.
Malavalli
,
S.
Chaudhuri
, and
S.
Basu
, “
Spray characteristics and flow topologies of high shear injector at high primary swirl
,”
Int. J. Multiphase Flow
131
,
103393
(
2020
).
25.
K.
Rajamanickam
,
A.
Potnis
,
K. R.
Sakthi Kumar
,
D.
Sivakumar
, and
S.
Basu
, “
On the influence of geometrical parameters on the spray characteristics of high shear injectors
,”
Exp. Therm. Fluid Sci.
109
,
109872
(
2019
).
26.
K.
Rajamanickam
,
A.
Potnis
,
S.
Kumar
, and
S.
Basu
, “
On the dynamics of sprays in complex gas turbine swirl injectors
,”
Exp. Fluids
61
,
39
(
2020
).
27.
A.
Dotto
,
D.
Lengani
,
D.
Simoni
, and
A.
Tacchella
, “
Dynamic mode decomposition and Koopman spectral analysis of boundary layer separation-induced transition
,”
Phys. Fluids
33
,
104104
(
2021
).
28.
O. T.
Schmidt
and
A.
Towne
, “
An efficient streaming algorithm for spectral proper orthogonal decomposition
,”
Comput. Phys. Commun.
237
,
98
(
2019
).
29.
L.
Rukes
,
M.
Sieber
,
C. O.
Paschereit
, and
K.
Oberleithner
, “
The impact of heating the breakdown bubble on the global mode of a swirling jet: Experiments and linear stability analysis
,”
Exp. Fluids
56
,
197
(
2015
).
30.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
(
2017
).
31.
D. M.
Markovich
,
S. S.
Abdurakipov
,
L. M.
Chikishev
,
V. M.
Dulin
, and
K.
Hanjalić
, “
Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions
,”
Phys. Fluids
26
,
065109
(
2014
).
32.
I.
Scherl
,
B.
Strom
,
J. K.
Shang
,
O.
Williams
,
B. L.
Polagye
, and
S. L.
Brunton
, “
Robust principal component analysis for modal decomposition of corrupt fluid flows
,”
Phys. Rev. Fluids
5
,
054401
(
2020
).
33.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
34.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures
,”
Q. Appl. Math.
45
,
583
(
1987
).
35.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
(
2010
).
36.
S.
Roy
,
T.
Yi
,
N.
Jiang
,
G. H.
Gunaratne
,
I.
Chterev
,
B.
Emerson
,
T.
Lieuwen
,
A. W.
Caswell
, and
J. R.
Gord
, “
Dynamics of robust structures in turbulent swirling reacting flows
,”
J. Fluid Mech.
816
,
554
(
2017
).
37.
H.
Ping
,
H.
Zhu
,
K.
Zhang
,
D.
Zhou
,
Y.
Bao
,
Y.
Xu
, and
Z.
Han
, “
Dynamic mode decomposition based analysis of flow past a transversely oscillating cylinder
,”
Phys. Fluids
33
,
033604
(
2021
).
38.
A.
Dotto
,
D.
Barsi
,
D.
Lengani
,
D.
Simoni
, and
F.
Satta
, “
Effect of free-stream turbulence properties on different transition routes for a zero-pressure gradient boundary layer
,”
Phys. Fluids
34
,
054102
(
2022
).
39.
G.
Huang
,
Y.
Dai
, and
C.
Yang
, “
Energy extraction in the dynamic modes of flow for airfoil's laminar separation flutter
,”
Phys. Fluids
34
,
083601
(
2022
).
40.
Y.
Fang
,
Y.
Yang
,
K.
Hu
,
G.
Wang
,
J.
Li
, and
Y.
Zheng
, “
Experimental study on self-excited thermoacoustic instabilities and intermittent switching of azimuthal and longitudinal modes in an annular combustor
,”
Phys. Fluids
33
,
084104
(
2021
).
41.
C. W.
Rowley
and
S. T. M.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
(
2017
).
42.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
(
2018
).
43.
A.
Karmarkar
,
S.
Gupta
,
I.
Boxx
,
S.
Hemchandra
, and
J.
O'Connor
, “
Impact of precessing vortex core dynamics on the thermoacoustic instabilities in a swirl-stabilized combustor
,”
J. Fluid Mech.
946
,
A36
(
2022
).
44.
C.
Braud
,
D.
Heitz
,
G.
Arroyo
,
L.
Perret
,
J.
Delville
, and
J. P.
Bonnet
, “
Low-dimensional analysis, using POD, for two mixing layer–wake interactions
,”
Int. J. Heat Fluid Flow
25
,
351
(
2004
).
45.
S.
Karami
and
J.
Soria
, “
Analysis of coherent structures in an under-expanded supersonic impinging jet using spectral proper orthogonal decomposition (SPOD)
,”
Aerospace
5
,
73
(
2018
).
46.
D. B.
Araya
,
T.
Colonius
, and
J. O.
Dabiri
, “
Transition to bluff-body dynamics in the wake of vertical-axis wind turbines
,”
J. Fluid Mech.
813
,
346
(
2017
).
47.
N. A.
Chigier
and
J. M.
Beér
, “
Velocity and static-pressure distributions in swirling air jets issuing from annular and divergent nozzles
,”
J. Fluids Eng., Trans. ASME
86
,
788
(
1964
).
48.
M.
Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kähler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
(
Springer
,
2018
).
49.
B.
Wieneke
, “
PIV uncertainty quantification from correlation statistics
,”
Meas. Sci. Technol.
26
,
074002
(
2015
).
50.
S.
Roy
,
J. C.
Hua
,
W.
Barnhill
,
G. H.
Gunaratne
, and
J. R.
Gord
, “
Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions
,”
Phys. Rev. E
91
,
013001
(
2015
).
51.
O. T.
Schmidt
and
T.
Colonius
, “
Guide to spectral proper orthogonal decomposition
,”
AIAA J.
58
,
1023
(
2020
).
52.
M.
Farge
, “
Wavelet transforms and their applications to turbulence
,”
Annu. Rev. Fluid Mech.
24
,
395
(
1992
).
53.
A.
Nekkanti
and
O. T.
Schmidt
, “
Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD
,”
J. Fluid Mech.
926
,
26
(
2021
).
54.
P. D.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
(
1967
).
55.
Y.
Huang
and
V.
Yang
, “
Dynamics and stability of lean-premixed swirl-stabilized combustion
,”
Prog. Energy Combust. Sci.
35
,
293
(
2009
).
56.
S.
Taamallah
,
Y.
Dagan
,
N.
Chakroun
,
S. J.
Shanbhogue
,
K.
Vogiatzaki
, and
A. F.
Ghoniem
, “
Helical vortex core dynamics and flame interaction in turbulent premixed swirl combustion: A combined experimental and large eddy simulation investigation
,”
Phys. Fluids
31
,
025108
(
2019
).
57.
J. L.
Lumley
,
Stochastic Tools in Turbulence, Applied Mathematics and Mechanics (Academic Press, 1970)
, Vol. 12.
You do not currently have access to this content.