Modification of a convective internal boundary layer (IBL) by spanwise motion of a warm surface is investigated by imposing different surface moving speeds in the present study. Our analysis shows that the spanwise surface motion reduces the Reynolds shear stress right after the increase in the surface temperature in the convective IBL. The maximum decreasing rate of the Reynolds shear stress is found to be approximately 75% at the largest moving speed of the warm surface considered in the manuscript. Due to the reduction of the Reynolds shear stress, the vertical momentum transport is fundamentally altered, and the mean flow accelerates immediately after the increase in the surface temperature. By scrutinizing the instantaneous and conditional averaged flow fields as well as the pre-multiplied energy spectra, we have attributed the reduction of the Reynolds shear stress to the suppression of the near-surface velocity streaks and quasi-streamwise vortices, and the delayed growth of the convective structures, such as thermal plumes. Our investigation suggests that the developments of the convective IBL can be influenced by a strong spanwise motion of the warm surface, which should be taken into consideration in the prediction model for practical applications.

1.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness
,”
Water Resour. Res.
40
,
W02505
, (
2004
).
2.
A.
Rouhi
,
D.
Chung
, and
N.
Hutchins
, “
Direct numerical simulation of open-channel flow over smooth-to-rough and rough-to-smooth step changes
,”
J. Fluid Mech.
866
,
450
486
(
2019
).
3.
N.
Saito
and
D.
Pullin
, “
Large eddy simulation of smooth-rough-smooth transitions in turbulent channel flows
,”
Int. J. Heat Mass Transfer
78
,
707
720
(
2014
).
4.
J. R.
Garratt
,
The Atmospheric Boundary Layer
(
Cambridge University Press
,
1992
).
5.
J. R.
Garratt
, “
The internal boundary layer: A review
,”
Boundary-Layer Meteorol.
50
,
171
203
(
1990
).
6.
T.
Hara
,
Y.
Ohya
,
T.
Uchida
, and
R.
Ohba
, “
Wind-tunnel and numerical simulations of the coastal thermal internal boundary layer
,”
Boundary-Layer Meteorol.
130
,
365
381
(
2009
).
7.
L.
Mahrt
,
D.
Vickers
, and
E.
Moore
, “
Flow adjustments across sea-surface temperature changes
,”
Boundary-Layer Meteorol.
111
,
553
564
(
2004
).
8.
E. D.
Skyllingstad
,
D.
Vickers
,
L.
Mahrt
, and
R.
Samelson
, “
Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer
,”
Boundary-Layer Meteorol.
123
,
219
237
(
2007
).
9.
Q.
Song
,
T.
Hara
,
P.
Cornillon
, and
C. A.
Friehe
, “
A comparison between observations and MM5 simulations of the marine atmospheric boundary layer across a temperature front
,”
J. Atmos. Ocean. Technol.
21
,
170
178
(
2004
).
10.
V. N.
Kudryavtsev
,
S. A.
Grodsky
,
V. A.
Dulov
, and
V. V.
Malinovsky
, “
Observations of atmospheric boundary layer evolution above the Gulf Stream frontal zone
,”
Boundary-Layer Meteorol.
79
,
51
82
(
1996
).
11.
C. A.
Friehe
,
W. J.
Shaw
,
D. P.
Rogers
,
K. L.
Davidson
,
W. G.
Large
,
S. A.
Stage
,
G. H.
Crescenti
,
S. J. S.
Khalsa
,
G. K.
Greenhut
, and
F.
Li
, “
Air-sea fluxes and surface layer turbulence around a sea surface temperature front
,”
J. Geophys. Res.
96
,
8593
8609
, (
1991
).
12.
M. M. K.
Wai
and
S. A.
Stage
, “
Dynamical analyses of marine atmospheric boundary layer structure near the Gulf Stream oceanic front
,”
Q. J. R. Meteorol. Soc.
115
,
29
44
(
1989
).
13.
T. S.
Kim
,
K. A.
Park
,
X.
Li
,
A. A.
Mouche
,
B.
Chapron
, and
M.
Lee
, “
Observation of wind direction change on the sea surface temperature front using high-resolution full polarimetric SAR data
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
10
,
2599
2607
(
2017
).
14.
A. S.
Smedman
and
U.
Hoegstroem
, “
Turbulent characteristics of a shallow convective internal boundary layer
,”
Boundary-Layer Meteorol.
25
,
271
287
(
1983
).
15.
H.
Tokinaga
,
Y.
Tanimoto
,
M.
Nonaka
,
B.
Taguchi
,
T.
Fukamachi
,
S. P.
Xie
,
H.
Nakamura
,
T.
Watanabe
, and
I.
Yasuda
, “
Atmospheric sounding over the winter Kuroshio extension: Effect of surface stability on atmospheric boundary layer structure
,”
Geophys. Res. Lett.
33
,
025102
, (
2006
).
16.
T. D.
Sikora
and
S.
Ufermann
,
Marine Atmospheric Boundary Layer Cellular Convection and Longitudinal Roll Vortices, SAR Marine User's Manual
(
NOAA
,
Washington, DC
,
2004
), pp.
321
330
.
17.
T.
Kilpatrick
,
N.
Schneider
, and
B.
Qiu
, “
Boundary layer convergence induced by strong winds across a midlatitude SST front
,”
J. Clim.
27
,
1698
1718
(
2014
).
18.
J.
Wallace
,
T.
Mitchell
, and
C.
Deser
, “
The influence of sea-surface temperature on surface wind in the Eastern Equatorial Pacific: Seasonal and interannual variability
,”
J. Clim.
2
,
1492
1499
(
1989
).
19.
R.
Samelson
,
E. D.
Skyllingstad
,
D. B.
Chelton
,
S. K.
Esbensen
,
L. W.
O'Neill
, and
N.
Thum
, “
On the coupling of wind stress and sea surface temperature
,”
J. Clim.
19
,
1557
1566
(
2006
).
20.
D.
Halkin
and
T.
Rossby
, “
The structure and transport of the Gulf Stream at 73W
,”
J. Phys. Oceanogr.
15
,
1439
1452
(
1985
).
21.
M.
Tomczak
and
J. S.
Godfrey
,
Regional Oceanography: An Introduction
(
Elsevier
,
2013
).
22.
F. C.
Fuglister
, “
Annual variations in current speeds in the Gulf Stream system
,”
J. Mar. Res.
10
,
119
127
(
1951
).
23.
R. A.
Barkley
, “
The Kuroshio current
,”
Sci. J.
6
,
54
60
(
1970
).
24.
D.
Kang
and
Q.
Wang
, “
Optimized estimation of surface layer characteristics from profiling measurements
,”
Atmosphere
7
,
14
(
2016
).
25.
P.
Bradshaw
and
N. S.
Pontikos
, “
Measurements in the turbulent boundary layer on an ‘infinite’ swept wing
,”
J. Fluid Mech.
159
,
105
130
(
1985
).
26.
P.
Moin
,
T. H.
Shih
,
D.
Driver
, and
N. N.
Mansour
, “
Direct numerical simulation of a three-dimensional turbulent boundary layer
,”
Phys. Fluids A
2
,
1846
1853
(
1990
).
27.
E.
Touber
and
M. A.
Leschziner
, “
Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms
,”
J. Fluid Mech.
693
,
150
200
(
2012
).
28.
H.
Abe
, “
Direct numerical simulation of a non-equilibrium three-dimensional turbulent boundary layer over a flat plat
,”
J. Fluid Mech.
902
,
A20
(
2020
).
29.
M. X.
Zhao
,
M.
Yu
, and
T.
Cao
, “
Drag reduction in turbulent Taylor–Couette flow by axial oscillation of inner cylinder
,”
Phys. Fluids
33
,
055123
(
2021
).
30.
D. D.
Yang
,
Y. F.
Gao
,
M.
Yu
,
X. P.
Wen
, and
M. X.
Zhao
, “
Analysis of drag reduction effects in turbulent Taylor–Couette flow controlled via axial oscillation of inner cylinder
,”
Phys. Fluids
34
,
045111
(
2022
).
31.
J. I.
Choi
,
C. X.
Xu
, and
H. J.
Sung
, “
Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows
,”
AIAA J.
40
,
842
850
(
2002
).
32.
A.
Yakeno
,
Y.
Hasegawa
, and
N.
Kasagi
, “
Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation
,”
Phys. Fluids
26
,
085109
(
2014
).
33.
J. C.
Wyngaard
,
Turbulence in the Atmosphere
(
Cambridge University Press
,
2010
).
34.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Kluwer Academic Publishers
,
The Netherlands, Dordrecht
,
1988
).
35.
M.
Skote
, “
Comparison between spatial and temporal wall oscillations in turbulent boundary layer flows
,”
J. Fluid Mech.
730
,
273
294
(
2013
).
36.
D.
Gatti
and
M.
Quadrio
, “
Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing
,”
J. Fluid Mech.
802
,
553
582
(
2016
).
37.
C.
Viotti
,
M.
Quadrio
, and
P.
Luchini
, “
Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction
,”
Phys. Fluids
21
,
115109
(
2009
).
38.
M. X.
Zhao
,
W. X.
Huang
, and
C. X.
Xu
, “
Drag reduction in turbulent flows along a cylinder by streamwise-travelling waves of circumferential wall velocity
,”
J. Fluid Mech.
862
,
75
98
(
2019
).
39.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
40.
S.
Pirozzoli
,
M.
Bernardini
,
R.
Verzicco
, and
P.
Orlandi
, “
Mixed convection in turbulent channels with unstable stratification
,”
J. Fluid Mech.
821
,
482
516
(
2017
).
41.
Y. H.
Dong
and
X. Y.
Lu
, “
Direct numerical simulation of stably and unstably stratified turbulent open channel flows
,”
Acta Mech.
177
,
115
136
(
2005
).
42.
K.
Choi
,
J.
DeBisschop
, and
B.
Clayton
, “
Turbulent boundary-layer control by means of spanwise-wall oscillation
,”
AIAA J.
36
,
1157
1163
(
1998
).
43.
P.
Ricco
, “
Modification of near-wall turbulence due to spanwise wall oscillations
,”
J. Turbul.
5
, N
24
(
2004
).
44.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,”
Report No. CTR-S88-193
(
Center for Turbulence Research
,
1988
).
45.
J. C.
Klewicki
,
M. M.
Metzger
,
E.
Kelner
, and
E. M.
Thurlow
, “
Viscous sublayer flow visualizations at
Reθ1,500,000,”
Phys. Fluids
7
,
857
863
(
1995
).
46.
J.
Jiménez
, “
Near-wall turbulence
,”
Phys. Fluids
25
,
101302
(
2013
).
47.
G.
Yin
,
W. X.
Huang
, and
C. X.
Xu
, “
On near-wall turbulence in minimal flow units
,”
Int J. Heat Fluid Flow
65
,
192
199
(
2017
).
48.
O.
Lida
and
N.
Kasagi
, “
Direct numerical simulation of unstably stratified turbulent channel flow
,”
J. Heat Transfer
119
,
53
61
(
1997
).
49.
P. P.
Sullivan
and
E. G.
Patton
, “
The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation
,”
J. Atmos. Sci.
68
,
2395
2415
(
2011
).
50.
J. W.
Deardorff
, “
Numerical investigation of neutral and unstable planetary boundary layers
,”
J. Atmos. Sci.
29
,
91
115
(
1972
).
51.
S. T.
Salesky
and
W.
Anderson
, “
Buoyancy effects on large-scale motions in convective atmospheric boundary layers: Implications for modulation of near-wall processes
,”
J. Fluid Mech.
856
,
135
168
(
2018
).
52.
S. T.
Salesky
,
M.
Chamecki
, and
E.
Bou-Zeid
, “
On the nature of the transition between roll and cellular organization in the convective boundary layer
,”
Boundary-Layer Meteorol.
163
,
41
68
(
2017
).
53.
A.
Hellsten
and
S.
Zilitinkevich
, “
Role of convective structures and background turbulence in the dry convective boundary layer
,”
Boundary-Layer Meteorol.
149
,
323
353
(
2013
).
54.
Y.
Shao
, “
Turbulent dispersion in coastal atmospheric boundary layers: An application of a Lagrangian model
,”
Boundary-Layer Meteorol.
59
,
363
385
(
1992
).
You do not currently have access to this content.