This paper reports a novel methodology that allows the intensity of, and the underlying mechanism for, the amplitude and length-scale modulation (amplification or attenuation) of turbulent stresses in the inner layer of a channel flow at Reτ5200 to be clarified. A unique aspect of the present framework is the use of an auto-encoder algorithm to separate full-volume extremely large direct numerical simulation (DNS) fields into large-scale and small-scale motions. This approach is adopted in preference to the empirical mode decomposition (EMD) previously used by the present authors at the lower Reynolds number, Reτ1000, because resource requirements posed by the EMD quickly become untenable due to the extremely large DNS dataset and the large solution box needed to capture the wide spectrum of scales at the present Reynolds number. A second original element is a formalism that derived the modulation, conditional on large-scale fluctuations, from continuous statistical quantities represented as multivariable-joint probability-density functions, thus obviating the need for any discrete representation or binning beyond that imposed by the discrete DNS solution. A third novel aspect is the use of the length-scale-wise derivative of the second-order structure function to quantify the modulation (increase or decrease) in the length scale, again conditional on large-scale structures. Apart from illuminating the modulation itself, the study examined the validity of the quasi-steady hypothesis that proposes that the near-wall turbulence is universal when scaled by the spatially and temporally varying large-scale wall shear stress rather than its time average.

1.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
(
2007
).
2.
N.
Hutchins
and
I.
Marusic
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc. London A
365
,
647
(
2007
).
3.
R.
Mathis
,
N.
Hutchins
, and
I.
Marusic
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
(
2009
).
4.
C. E.
Willert
,
J.
Soria
,
M.
Stanislas
,
J.
Klinner
,
O.
Amili
,
M.
Eisfelder
,
C.
Cuvier
,
G.
Bellani
,
T.
Fiorini
, and
A.
Talamelli
, “
Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000
,”
J. Fluid Mech.
826
,
R5
(
2017
).
5.
T.
Fiorini
,
G.
Bellani
,
R.
Örlü
,
A.
Segalini
,
P. H.
Alfredsson
, and
A.
Talamelli
, “
Turbulent pipe flow near-wall statistics
,” in
Progress in Turbulence VII
(
Springer
,
2017
), pp.
89
94
.
6.
A. J.
Smits
,
B. J.
McKeon
, and
I.
Marusic
, “
High-Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
(
2011
).
7.
A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
1980
).
8.
R.
Mathis
,
J. P.
Monty
,
N.
Hutchins
, and
I.
Marusic
, “
Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows
,”
Phys. Fluids
21
,
111703
(
2009
).
9.
B.
Ganapathisubramani
,
N.
Hutchins
,
J.
Monty
,
D.
Chung
, and
I.
Marusic
, “
Amplitude and frequency modulation in wall turbulence
,”
J. Fluid Mech.
712
,
61
(
2012
).
10.
W.
Baars
,
K.
Talluru
,
N.
Hutchins
, and
I.
Marusic
, “
Wavelet analysis of wall turbulence to study large-scale modulation of small scales
,”
Exp. Fluids
56
,
188
(
2015
).
11.
G.
Pathikonda
and
K. T.
Christensen
, “
Investigation of inner-outer interactions in a turbulent boundary layer using high-speed particle image velocimetry
,”
Phys. Rev. Fluids
4
,
034607
(
2019
).
12.
G.
Iacobello
,
L.
Ridolfi
, and
S.
Scarsoglio
, “
Large-to-small scale frequency modulation analysis in wall-bounded turbulence via visibility networks
,”
J. Fluid Mech.
918
,
A13
(
2021
).
13.
P.
Schlatter
and
R.
Örlü
, “
Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution
,”
Phys. Fluids
22
,
051704
(
2010
).
14.
I.
Jacobi
and
B.
McKeon
, “
Phase relationships between large and small scales in the turbulent boundary layer
,”
Exp. Fluids
54
,
1481
(
2013
).
15.
S.
Duvvuri
and
B.
McKeon
, “
Triadic scale interactions in a turbulent boundary layer
,”
J. Fluid Mech.
767
,
R4
(
2015
).
16.
D.
Chung
and
B.
McKeon
, “
Large-eddy simulation of large-scale structures in long channel flow
,”
J. Fluid Mech.
661
,
341
(
2010
).
17.
M.
Bernardini
and
S.
Pirozzoli
, “
Inner/outer layer interactions in turbulent boundary layers: A refined measure for the large-scale amplitude modulation mechanism
,”
Phys. Fluids
23
,
061701
(
2011
).
18.
G.
Eitel-Amor
,
R.
Örlü
, and
P.
Schlatter
, “
Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ = 8300
,”
Int. J. Heat Fluid Flow
47
,
57
(
2014
).
19.
L.
Agostini
,
M.
Leschziner
,
J.
Poggie
,
N.
Bisek
, and
D.
Gaitonde
, “
Multi-scale interactions in a compressible boundary layer
,”
J. Turbul.
18
,
760
(
2017
).
20.
E.
Dogan
,
R.
Örlü
,
D.
Gatti
,
R.
Vinuesa
, and
P.
Schlatter
, “
Quantification of amplitude modulation in wall-bounded turbulence
,”
Fluid Dyn. Res.
51
,
011408
(
2019
).
21.
A.
Andreolli
,
D.
Gatti
,
R.
Vinuesa
,
R.
Örlü
, and
P.
Schlatter
, “
Effects of sweeps and ejections on amplitude modulation in a turbulent channel flow
,” arXiv:2109.09486 (
2021
).
22.
L.
Agostini
and
M.
Leschziner
, “
On the departure of near-wall turbulence from the quasi-steady state
,”
J. Fluid Mech.
871
,
R1
(
2019
).
23.
S.
Chernyshenko
, “
Extension of qsqh theory of scale interaction in near-wall turbulence to all velocity components
,”
J. Fluid Mech.
916
,
A52
(
2021
).
24.
L.
Agostini
and
M.
Leschziner
, “
On the influence of outer large-scale structures on near-wall turbulence in channel flow
,”
Phys. Fluids
26
,
075107
(
2014
).
25.
L.
Agostini
and
M.
Leschziner
, “
The connection between the spectrum of turbulent scales and the skin-friction statistics in channel flow at Reτ 1000
,”
J. Fluid Mech.
871
,
22
(
2019
).
26.
E.
Touber
and
M. A.
Leschziner
, “
Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms
,”
J. Fluid Mech.
693
,
150
(
2012
).
27.
L.
Agostini
and
M.
Leschziner
, “
Statistical analysis of outer large-scale/inner-layer interactions in channel flow subjected to oscillatory drag-reducing wall motion using a multiple-variable joint-probability-density function methodology
,”
J. Fluid Mech.
923
,
A25
(
2021
).
28.
D.
Gatti
and
M.
Quadrio
, “
Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing
,”
J. Fluid Mech.
802
,
553
(
2016
).
29.
P.
Ricco
,
M.
Skote
, and
M. A.
Leschziner
, “
A review of turbulent skin-friction drag reduction by near-wall transverse forcing
,”
Prog. Aerosp. Sci.
123
,
100713
(
2021
).
30.
H.
Hurst
and
Y.
Chung
, “
The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves
,”
J. Fluid Mech.
759
,
28
(
2014
).
31.
T.
Nickels
,
I.
Marusic
,
S.
Hafez
, and
M.
Chong
, “
Evidence k11 law a high-Reynolds-number turbulent boundary layer
,”
Phys. Rev. Lett.
95
,
074501
(
2005
).
32.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
4972
(
2008
).
33.
M.
Lee
and
R. D.
Moser
, “
Direct numerical simulation of turbulent channel flow up to
Reτ5200,”
J. Fluid Mech.
774
,
395
(
2015
).
34.
A. T.
Mohan
,
N.
Lubbers
,
D.
Livescu
, and
M.
Chertkov
, “
Embedding hard physical constraints in neural network coarse-graining of 3d turbulence
,” arXiv:2002.00021 (
2020
).
35.
R.
Maulik
,
B.
Lusch
, and
P.
Balaprakash
, “
Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
,”
Phys. Fluids
33
,
037106
(
2021
).
36.
L.
Agostini
, “
Exploration and prediction of fluid dynamical systems using auto-encoder technology
,”
Phys. Fluids
32
,
067103
(
2020
).
37.
P.
Vincent
,
H.
Larochelle
,
I.
Lajoie
,
Y.
Bengio
,
P.-A.
Manzagol
, and
L.
Bottou
, “
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
,”
J. Mach. Learn. Res.
11
,
3371
(
2010
).
38.
C.
Zhou
and
R. C.
Paffenroth
, “
Anomaly detection with robust deep autoencoders
,” in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
Association for Computing Machinery
,
2017
), pp.
665
674
.
39.
L.
Guastoni
,
A.
Güemes
,
A.
Ianiro
,
S.
Discetti
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Convolutional-network models to predict wall-bounded turbulence from wall quantities
,”
J. Fluid Mech.
928
,
A27
(
2021
).
40.
E.
Plaut
, “
From principal subspaces to principal components with linear autoencoders
,” arXiv:1804.10253 (
2018
).
41.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
A13
(
2020
).
42.
D.-A.
Clevert
,
T.
Unterthiner
, and
S.
Hochreiter
, “
Fast and accurate deep network learning by exponential linear units (ELUs)
,” arXiv:1511.07289 (
2015
).
43.
The relevant code and trained model will be made available on request.
44.
P.
Davidson
,
P.-A.
Krogstad
,
T.
Nickels
 et al, “
A refined interpretation of the logarithmic structure function law in wall layer turbulence
,”
Phys. Fluids
18
,
065112
(
2006
).
45.
L.
Agostini
and
M.
Leschziner
, “
Spectral analysis of near-wall turbulence in channel flow at Reτ=4200 with emphasis on the attached-eddy hypothesis
,”
Phys. Rev. Fluids
2
,
014603
(
2017
).
46.
I.
De Moortel
,
S.
Munday
, and
A. W.
Hood
, “
Wavelet analysis: The effect of varying basic wavelet parameters
,”
Sol. Phys.
222
,
203
(
2004
).
47.
L.
Agostini
and
M.
Leschziner
, “
The impact of footprints of large-scale outer structures on the near-wall layer in the presence of drag-reducing spanwise wall motion
,”
Flow, Turbul. Combust.
100
,
1037
(
2018
).
48.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
Predictive model for wall-bounded turbulent flow
,”
Science
329
,
193
(
2010
).
49.
S.
Chernyshenko
,
I.
Marusic
, and
R.
Mathis
, “
Quasi-steady description of modulation effects in wall turbulence
,” arXiv:1203.3714 [physics] (
2012
).
50.
M.
Lee
and
R. D.
Moser
, “Channel flow at Reτ = 5200,”
Johns Hopkins Turbulence Databases
. (
2019
).
You do not currently have access to this content.