This study aims at analytically and numerically exploring the influence of combustion-induced thermal expansion on turbulence in premixed flames. In the theoretical part, contributions of solenoidal and potential velocity fluctuations to the unclosed component of the advection term in the Reynolds-averaged Navier–Stokes equations are compared, and a new criterion for assessing the importance of the thermal expansion effects is introduced. The criterion highlights a ratio of the dilatation in the laminar flame to the large-scale gradient of root mean square (rms) velocity in the turbulent flame brush. To support the theoretical study, direct numerical simulation (DNS) data obtained earlier from two complex-chemistry, lean H2–air flames are analyzed. In line with the new criterion, even at sufficiently high Karlovitz numbers, the results show significant influence of combustion-induced potential velocity fluctuations on the second moments of the turbulent velocity upstream of and within the flame brush. In particular, the DNS data demonstrate that (i) potential and solenoidal rms velocities are comparable in the unburnt gas close to the leading edge of the flame brush and (ii) potential and solenoidal rms velocities conditioned to unburnt gas are comparable within the entire flame brush. Moreover, combustion-induced thermal expansion affects not only the potential velocity but even the solenoidal one. The latter effects manifest themselves in a negative correlation between solenoidal velocity fluctuations and dilatation or in the counter-gradient behavior of the solenoidal scalar flux. Finally, a turbulence-in-premixed-flame diagram is sketched to discuss the influence of combustion-induced thermal expansion on various ranges of turbulence spectrum.

1.
B.
Karlovitz
,
D. W.
Denniston
, and
F. E.
Wells
, “
Investigation of turbulent flames
,”
J. Chem. Phys.
19
,
541
547
(
1951
).
2.
P. A.
Libby
and
K. N. C.
Bray
, “
Countergradient diffusion in premixed turbulent flames
,”
AIAA J.
19
,
205
213
(
1981
).
3.
C.
Dopazo
,
L.
Cifuentes
, and
N.
Chakraborty
, “
Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers
,”
Phys. Fluids
29
,
045106
(
2017
).
4.
Z.
Wang
and
J.
Abraham
, “
Effects of Karlovitz number on turbulent kinetic energy transport in turbulent lean premixed methane/air flames
,”
Phys. Fluids
29
,
085102
(
2017
).
5.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Combustion-induced local shear layers within premixed flamelets in weakly turbulent flows
,”
Phys. Fluids
30
,
085101
(
2018
).
6.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Does flame-generated vorticity increase turbulent burning velocity?
,”
Phys. Fluids
30
,
081702
(
2018
).
7.
P.
Brearley
,
U.
Ahmed
,
N.
Chakraborty
, and
A. N.
Lipatnikov
, “
Statistical behaviours of conditioned two-point second-order structure functions in turbulent premixed flames in different combustion regimes
,”
Phys. Fluids
31
,
115109
(
2019
).
8.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
A direct numerical simulation study of the influence of flame-generated vorticity on reaction-zone-surface area in weakly turbulent premixed combustion
,”
Phys. Fluids
31
,
055101
(
2019
).
9.
A. R.
Varma
,
U.
Ahmed
, and
N.
Chakraborty
, “
Effects of body forces on vorticity and enstrophy evolutions in turbulent premixed flames
,”
Phys. Fluids
33
,
035102
(
2021
).
10.
J. F.
MacArt
and
M. E.
Mueller
, “
Damköhler number scaling of active cascade effects in turbulent premixed combustion
,”
Phys. Fluids
33
,
035103
(
2021
).
11.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
S.
Nishiki
,
H. L.
Dave
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
Dissipation and dilatation rates in premixed turbulent flames
,”
Phys. Fluids
33
,
035112
(
2021
).
12.
N.
Chakraborty
,
C.
Kasten
,
U.
Ahmed
, and
M.
Klein
, “
Evolutions of strain rate and dissipation rate of kinetic energy in turbulent premixed flames
,”
Phys. Fluids
33
,
125132
(
2021
).
13.
N.
Chakraborty
,
U.
Ahmed
,
M.
Klein
, and
H. G.
Im
, “
Alignment statistics of pressure Hessian with strain rate tensor and reactive scalar gradient in turbulent premixed flames
,”
Phys. Fluids
34
,
065120
(
2022
).
14.
S. Kr.
Ghai
,
N.
Chakraborty
,
U.
Ahmed
, and
M.
Klein
, “
Enstrophy evolution during head-on wall interaction of premixed flames within turbulent boundary layers
,”
Phys. Fluids
34
,
075124
(
2022
).
15.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
N.
Nikitin
,
F. E.
Hernández-Pérez
, and
H. G.
Im
, “
Conditioned structure functions in turbulent hydrogen/air flames
,”
Phys. Fluids
34
,
085103
(
2022
).
16.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Effects of premixed flames on turbulence and turbulent scalar transport
,”
Prog. Energy Combust. Sci.
36
,
1
102
(
2010
).
17.
V. A.
Sabelnikov
and
A. N.
Lipatnikov
, “
Recent advances in understanding of thermal expansion effects in premixed turbulent flames
,”
Annu. Rev. Fluid Mech.
49
,
91
117
(
2017
).
18.
N.
Chakraborty
, “
Influence of thermal expansion on fluid dynamics of turbulent premixed combustion and its modeling implications
,”
Flow, Turbul. Combust.
106
,
753
848
(
2021
).
19.
A. M.
Steinberg
,
P. E.
Hamlington
, and
X.
Zhao
, “
Structure and dynamics of highly turbulent premixed combustion
,”
Prog. Energy Combust. Sci.
85
,
100900
(
2021
).
20.
S. H. R.
Whitman
,
C. A. Z.
Towery
,
A. Y.
Poludnenko
, and
P. E.
Hamlington
, “
Scaling and collapse of conditional velocity structure functions in turbulent premixed flames
,”
Proc. Combust. Inst.
37
,
2527
2535
(
2019
).
21.
J.
Lee
,
J. F.
MacArt
, and
M. E.
Mueller
, “
Heat release effects on the Reynolds stress budgets in turbulent premixed jet flames at low and high Karlovitz numbers
,”
Combust. Flame
216
,
1
8
(
2020
).
22.
R.
Darragh
,
C. A. Z.
Towery
,
A. Y.
Poludnenko
, and
P. E.
Hamlington
, “
Particle pair dispersion and eddy diffusivity in a high-speed premixed flame
,”
Proc. Combust. Inst.
38
,
2845
2852
(
2021
).
23.
J.
Lee
and
M. E.
Mueller
, “
Closure modeling for the conditional Reynolds stresses in turbulent premixed combustion
,”
Proc. Combust. Inst.
38
,
3031
3038
(
2021
).
24.
A.
Kazbekov
and
A. M.
Steinberg
, “
Flame- and flow-conditioned vorticity transport in premixed swirl combustion
,”
Proc. Combust. Inst.
38
,
2949
2956
(
2021
).
25.
A.
Kazbekov
and
A. M.
Steinberg
, “
Physical space analysis of cross-scale turbulent kinetic energy transfer in premixed swirl flames
,”
Combust. Flame
229
,
111403
(
2021
).
26.
K. N. C.
Bray
, “
Turbulent transport in flames
,”
Proc. R. Soc. London, Ser. A
451
,
231
256
(
1995
).
27.
D.
Veynante
,
A.
Trouvé
,
K. N. C.
Bray
, and
T.
Mantel
, “
Gradient and counter-gradient scalar transport in turbulent premixed flames
,”
J. Fluid Mech.
332
,
263
293
(
1997
).
28.
R. W.
Bilger
, “
Some aspects of scalar dissipation
,”
Flow, Turbul. Combust.
72
,
93
114
(
2004
).
29.
A. S.
Monin
and
A. M.
Yaglom
,
Statistical Fluid Mechanics: Mechanics of Turbulence
(
The MIT Press
,
Cambridge
,
Massachusetts
,
1975
), Vol.
2
.
30.
J. F.
MacArt
,
T.
Grenga
, and
M. E.
Mueller
, “
Effects of combustion heat release on velocity and scalar statistics in turbulent premixed jet flames at low and high Karlovitz numbers
,”
Combust. Flame
191
,
468
485
(
2018
).
31.
J. F.
MacArt
,
T.
Grenga
, and
M. E.
Mueller
, “
Evolution of flame-conditioned velocity statistics in turbulent premixed jet flames at varying Karlovitz number
,”
Proc. Combust. Inst.
37
,
2503
2510
(
2019
).
32.
J.
O'Brien
,
C. A. Z.
Towery
,
P. E.
Hamlington
,
M.
Ihme
,
A. Y.
Poludnenko
, and
J.
Urzay
, “
The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames
,”
Proc. Combust. Inst.
36
,
1967
1975
(
2017
).
33.
A. J.
Chorin
and
J. E.
Marsden
,
A Mathematical Introduction to Fluid Mechanics
(
Springer
,
Berlin, Germany
,
1993
).
34.
V. A.
Sabelnikov
,
R.
Yu
, and
A. N.
Lipatnikov
, “
Thin reaction zones in constant-density turbulent flows at low Damköhler numbers: Theory and simulations
,”
Phys. Fluids
31
,
055104
(
2019
).
35.
J. F.
Driscoll
,
J. H.
Chen
,
A. W.
Skiba
,
C. D.
Carter
,
E. R.
Hawkes
, and
H.
Wang
, “
Premixed flames subjected to extreme turbulence: Some questions and recent answers
,”
Prog. Energy Combust. Sci.
76
,
100802
(
2020
).
36.
N.
Swaminathan
,
R. W.
Bilger
, and
B.
Cuenot
, “
Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry
,”
Combust. Flame
126
,
1764
1779
(
2001
).
37.
N.
Chakraborty
and
R. S.
Cant
, “
Effects of Lewis number on scalar transport in turbulent premixed flames
,”
Phys. Fluids
21
,
035110
(
2009
).
38.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Molecular transport effects on turbulent flame propagation and structure
,”
Prog. Energy Combust. Sci.
31
,
1
73
(
2005
).
39.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations
,”
Prog. Energy Combust. Sci.
28
,
1
73
(
2002
).
40.
T.
Sponfeldner
,
N.
Soulopoulos
,
F.
Beyrau
,
Y.
Hardalupas
,
A. M. K. P.
Taylor
, and
J. C.
Vassilicos
, “
The structure of turbulent flames in fractal- and regular-grid-generated turbulence
,”
Combust. Flame
162
,
3379
3393
(
2015
).
41.
J.
Kim
,
A.
Satja
,
R. P.
Lucht
, and
J. P.
Gore
, “
Effects of turbulent flow regime on perforated plate stabilized piloted lean premixed flames
,”
Combust. Flame
211
,
158
172
(
2020
).
42.
S.
Kheirkhah
and
Ö. L.
Gülder
, “
A revisit to the validity of flamelet assumptions in turbulent premixed combustion and implications for future research
,”
Combust. Flame
239
,
111635
(
2022
).
43.
R.
Yu
,
X.-S.
Bay
, and
A. N.
Lipatnikov
, “
A direct numerical simulation study of interface propagation in homogeneous turbulence
,”
J. Fluid Mech.
772
,
127
164
(
2015
).
44.
R.
Yu
and
A. N.
Lipatnikov
, “
Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence
,”
Phys. Rev. E
95
,
063101
(
2017
).
45.
T.
Kulkarni
and
F.
Bisetti
, “
Analysis of the development of the flame brush in turbulent premixed spherical flames
,”
Combust. Flame
234
,
111640
(
2021
).
46.
D. H.
Wacks
,
N.
Chakraborty
,
M.
Klein
,
P. G.
Arias
, and
H. G.
Im
, “
Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis
,”
Phys. Rev. Fluids
1
,
083401
(
2016
).
47.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
A priori DNS study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers
,”
Combust. Flame
222
,
370
382
(
2020
).
48.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
F. E.
Hernández-Pérez
,
W.
Song
, and
H. G.
Im
, “
Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed PDF
,”
Combust. Flame
226
,
248
259
(
2021
).
49.
M. P.
Burke
,
M.
Chaos
,
Y.
Ju
,
F. L.
Dryer
, and
S. J.
Klippenstein
, “
Comprehensive H2/O2 kinetic model for high‐pressure combustion
,”
Int. J. Chem. Kinet.
44
,
444
474
(
2012
).
50.
J. H.
Chen
and
H. G.
Im
, “
Stretch effects on the burning velocity of turbulent premixed hydrogen-air flames
,”
Proc. Combust. Inst.
28
,
211
218
(
2000
).
51.
H. G.
Im
and
J. H.
Chen
, “
Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames
,”
Combust. Flame
131
,
246
258
(
2002
).
52.
T.
Passot
and
A.
Pouquet
, “
Numerical simulation of compressible homogeneous flows in the turbulent regime
,”
J. Fluid Mech.
181
,
441
466
(
1987
).
53.
H.
Bhatia
,
G.
Norgard
,
V.
Pascucci
, and
P.-T.
Bremer
, “
The Helmholtz-Hodge decomposition—A survey
,”
IEEE Trans. Visual. Comput. Graph.
19
,
1386
1404
(
2013
).
54.
H.
Bhatia
,
V.
Pascucci
, and
P.-T.
Bremer
, “
The natural Helmholtz-Hodge decomposition for open-boundary flow analysis
,”
IEEE Trans. Visual. Comput. Graph.
20
,
1566
1578
(
2014
).
55.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
N.
Nikitin
,
S.
Nishiki
, and
T.
Hasegawa
, “
Application of Helmholtz-Hodge decomposition and conditioned structure functions to exploring influence of premixed combustion on turbulence upstream of the flame
,”
Proc. Combust. Inst.
38
,
3077
3085
(
2021
).
56.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
N.
Nikitin
,
S.
Nishiki
, and
T.
Hasegawa
, “
Solenoidal and potential velocity fields in weakly turbulent premixed flames
,”
Proc. Combust. Inst.
38
,
3087
3095
(
2021
).
57.
R.
Yu
,
T.
Nillson
,
X.-S.
Bai
, and
A. N.
Lipatnikov
, “
Evolution of averaged local premixed flame thickness in a turbulent flow
,”
Combust. Flame
207
,
232
249
(
2019
).
58.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
Oxford
,
1987
).
59.
Y. B.
Zel'dovich
,
G. I.
Barenblatt
,
V. B.
Librovich
, and
G. M.
Makhviladze
,
The Mathematical Theory of Combustion and Explosions
(
Consultants Bureau
,
New York
,
1985
).
60.
R.
Borghi
, “
On the structure and morphology of turbulent premixed flames
,” in
Recent Advances in Aerospace Science
, edited by
S.
Casci
and
C.
Bruno
(
Plenum
,
New York
,
1984
), pp.
117
138
.
61.
F. A.
Williams
,
Combustion Theory
, 2nd ed. (
Benjamin/Cummings, Menlo Park
,
California
,
1985
).
62.
N.
Peters
, “
Laminar flamelet concepts in turbulent combustion
,”
Proc. Combust. Inst.
21
,
1231
(
1988
).
63.
S.
Corrsin
, “
Reactant concentration spectrum in turbulent mixing with a first-order reaction
,”
J. Fluid Mech.
11
,
407
416
(
1961
).
64.
A. N.
Lipatnikov
and
V. A.
Sabelnikov
, “
Karlovitz numbers and premixed turbulent combustion regimes for complex-chemistry flames
,”
Energies
15
,
5840
(
2022
).
65.
H.
Kolla
,
E. R.
Hawkes
,
A. R.
Kerstein
,
N.
Swaminathan
, and
J. H.
Chen
, “
On velocity and reactive scalar spectra in turbulent premixed flames
,”
J. Fluid Mech.
754
,
456
(
2014
).
66.
A. N.
Lipatnikov
,
J.
Chomiak
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Influence of heat release in a premixed flame on weakly turbulent flow of unburned gas: A DNS Study
,” in
Proceedings of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems
, 2–7 August 2015, Leeds, UK, edited by
M. I.
Radulescu
(
University of Leeds
,
UK
,
2015
).
67.
C. A. Z.
Towery
,
A. Y.
Poludnenko
,
J.
Urzay
,
J.
O'Brien
,
M.
Ihme
, and
P. E.
Hamlington
, “
Spectral kinetic energy transfer in turbulent premixed reacting flows
,”
Phys. Rev. E
93
,
053115
(
2016
).
68.
H.
Boughanem
and
A.
Trouvé
, “
The domain of influence of flame instabilities in turbulent premixed combustion
,”
Proc. Combust. Inst.
27
,
971
978
(
1998
).
69.
S.
Chaudhuri
,
V.
Akkerman
, and
C. K.
Law
, “
Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability
,”
Phys. Rev. E
84
,
026322
(
2011
).
70.
N.
Fogla
,
F.
Creta
, and
M.
Matalon
, “
The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments
,”
Combust. Flame
175
,
155
169
(
2017
).
71.
H. G.
Im
,
P. G.
Arias
,
S.
Chaudhuri
, and
H. A.
Uranakara
, “
Direct numerical simulations of statistically stationary turbulent premixed flames
,”
Combust. Sci. Technol.
188
,
1182
(
2016
).
72.
C. S.
Yoo
,
Y.
Wang
,
A.
Trouve
, and
H. G.
Im
, “
Characteristic boundary conditions for direct simulations of turbulent counterflow flames
,”
Combust. Theor. Model.
9
,
617
(
2005
).
73.
R. S.
Rogallo
, “
Numerical experiments in homogeneous turbulence
,” NASA Technical Memorandum No. 81315 (
NASA Ames Research Center
,
California
,
1981
).
You do not currently have access to this content.