A dynamic version of the improved delayed detached-eddy simulation (IDDES) based on the differential Reynolds-stress model (RSM), referred to as the RSM-DynIDDES, is developed by applying the dynamic Smagorinsky subgrid model to the large eddy simulation (LES) branch of the IDDES. The RSM-DynIDDES simulates the periodic hills flow after a basic numerical validation for the decaying isotropic turbulence simulation. Well-predicted velocity profiles and R eynolds stress distributions are obtained by the RSM-DynIDDES in the periodic hills flow. The simulation results indicate that the RSM-DynIDDES can capture more small-scale vortex structures in the LES region away from the wall than the original RSM-based IDDES (RSM-IDDES). The RSM-DynIDDES is also employed in simulating the transonic buffeting of a launch vehicle with a payload fairing. The numerical results have been compared with that of the RSM-IDDES. It is found that the RSM-DynIDDES can improve turbulence resolution in the off-wall region while retaining the advantages of the original RSM-IDDES in simulating the instability process of the free shear layer.

1.
P. R.
Spalart
, “
Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach
,” in
Proceedings of the First AFOSR International Conference on DNS/LES
(
Greyden Press
,
1997
).
2.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
(
1
),
181
202
(
2009
).
3.
P.
Spalart
and
S.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” AIAA Paper No. 1992-439,
1992
.
4.
F. R.
Menter
and
M.
Kuntz
, “
Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles
,”
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
(
Springer
,
Berlin, Heidelberg
,
2004
), pp.
339
352
.
5.
N. V.
Nikitin
,
F.
Nicoud
,
B.
Wasistho
,
K. D.
Squires
, and
P. R.
Spalart
, “
An approach to wall modeling in large-eddy simulations
,”
Phys. Fluids
12
(
7
),
1629
1632
(
2000
).
6.
P. R.
Spalart
,
S.
Deck
,
M. L.
Shur
,
K. D.
Squires
,
M. K.
Strelets
, and
A.
Travin
, “
A new version of detached-eddy simulation, resistant to ambiguous grid densities
,”
Theor. Comput. Fluid Dyn.
20
(
3
),
181
195
(
2006
).
7.
M. L.
Shur
,
P. R.
Spalart
,
M. K.
Strelets
, and
A. K.
Travin
, “
A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
,”
Int. J. Heat Fluid Flow
29
(
6
),
1638
1649
(
2008
).
8.
Z.
Xiao
,
J.
Liu
,
K.
Luo
,
J.
Huang
, and
S.
Fu
, “
Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches
,”
AIAA J.
51
(
1
),
107
125
(
2013
).
9.
S. G.
Horcas
,
N. N.
Sørensen
,
F.
Zahle
,
G. R.
Pirrung
, and
T.
Barlas
, “
Vibrations of wind turbine blades in standstill: Mapping the influence of the inflow angles
,”
Phys. Fluids
34
(
5
),
054105
(
2022
).
10.
Y.
Shi
and
W.
Kollmann
, “
Improved delayed detached eddy simulation of a porous wavy trailing edge
,”
Phys. Fluids
33
(
5
),
055128
(
2021
).
11.
J.
Niu
,
Y.
Wang
,
D.
Wu
, and
F.
Liu
, “
Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train
,”
Eng. Appl. Comput. Fluid Mech.
14
(
1
),
655
668
(
2020
).
12.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
13.
M.
Strelets
, “
Detached eddy simulation of massively separated flows
,” AIAA Paper No. 2001-0879,
2001
.
14.
K. R.
Reddy
,
J. A.
Ryon
, and
P. A.
Durbin
, “
A DDES model with a Smagorinsky-type eddy viscosity formulation and log-layer mismatch correction
,”
Int. J. Heat Fluid Flow
50
,
103
113
(
2014
).
15.
Z.
Xiao
,
H.
Chen
,
Y.
Zhang
,
J.
Huang
, and
S.
Fu
, “
Study of delayed-detached eddy simulation with weakly nonlinear turbulence model
,”
J. Aircr.
43
(
5
),
1377
1385
(
2006
).
16.
J.
SolKeun
and
K.
Shariff
, “
Detached-eddy simulation based on the v2-f model
,”
Int. J. Heat Fluid Flow
46
,
84
101
(
2014
).
17.
L.
Zhou
,
Z.
Gao
, and
Y.
Du
, “
Flow-dependent DDES/γ−Re¯θt coupling model for the simulation of separated transitional flow
,”
Aerosp. Sci. Technol.
87
,
389
403
(
2019
).
18.
A.
Probst
,
R.
Radespiel
, and
T.
Knopp
, “
Detached-eddy simulation of aerodynamic flows using a Reynolds-stress background model and algebraic RANS/LES sensors
,” AIAA Paper No. 2011-3206,
2011
.
19.
S.
Jakirlic
and
K.
Hanjalic
, “
A new approach to modelling near-wall turbulence energy and stress dissipation
,”
J. Fluid Mech.
459
,
139
(
2002
).
20.
G.
Wang
,
Q.
Li
, and
Y.
Liu
, “
IDDES method based on differential Reynolds-stress model and its application in bluff body turbulent flows
,”
Aerosp. Sci. Technol.
119
,
107207
(
2021
).
21.
R.-D.
Cécora
,
R.
Radespiel
,
B.
Eisfeld
, and
A.
Probst
, “
Differential Reynolds-stress modeling for aeronautics
,”
AIAA J.
53
(
3
),
739
755
(
2015
).
22.
Z.
Xiao
,
J.
Liu
,
J.
Huang
, and
S.
Fu
, “
Numerical dissipation effects on massive separation around tandem cylinders
,”
AIAA J.
50
(
5
),
1119
1136
(
2012
).
23.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations. I. The basic experiment
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
24.
V. M.
Canuto
and
Y.
Cheng
, “
Determination of the Smagorinsky–Lilly constant CS
,”
Phys. Fluids
9
(
5
),
1368
1378
(
1997
).
25.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid‐scale eddy viscosity model
,”
Phys. Fluids A
3
(
7
),
1760
1765
(
1991
).
26.
Z.
Li
and
X.
Yang
, “
Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles
,”
J. Fluid Mech.
921
,
A11
(
2021
).
27.
A.
Skillen
,
A.
Revell
,
A.
Pinelli
,
U.
Piomelli
, and
J.
Favier
, “
Flow over a wing with leading-edge undulations
,”
AIAA J.
53
(
2
),
464
472
(
2015
).
28.
C. D.
Pierce
and
P.
Moin
, “
Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion
,”
J. Fluid Mech.
504
,
73
97
(
2004
).
29.
H.
Lu
and
F.
Porté-Agel
, “
Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer
,”
Phys. Fluids
23
(
6
),
065101
(
2011
).
30.
M.
Ma
,
W. X.
Huang
, and
C. X.
Xu
, “
A dynamic wall model for large eddy simulation of turbulent flow over complex/moving boundaries based on the immersed boundary method
,”
Phys. Fluids
31
(
11
),
115101
(
2019
).
31.
H.
Liu
,
S.
He
,
L.
Shen
, and
J.
Hong
, “
Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant
,”
Phys. Fluids
33
(
2
),
023301
(
2021
).
32.
S.
Bhushan
and
D. K.
Walters
, “
A dynamic hybrid Reynolds-averaged Navier Stokes–large eddy simulation modeling framework
,”
Phys. Fluids
24
(
1
),
015103
(
2012
).
33.
C.
He
,
Y.
Liu
, and
S.
Yavuzkurt
, “
A dynamic delayed detached-eddy simulation model for turbulent flows
,”
Comput. Fluids
146
,
174
189
(
2017
).
34.
C.
He
,
L.
Gan
, and
Y.
Liu
, “
Dynamics of compact vortex rings generated by axial swirlers at early stage
,”
Phys. Fluids
32
(
4
),
045104
(
2020
).
35.
F.
Li
,
C.
He
,
P.
Wang
, and
Y.
Liu
, “
Unsteady analysis of turbulent flow and heat transfer behind a wall-proximity square rib using dynamic delayed detached-eddy simulation
,”
Phys. Fluids
33
(
5
),
055104
(
2021
).
36.
Z.
Yin
,
K. R.
Reddy
, and
P. A.
Durbin
, “
On the dynamic computation of the model constant in delayed detached eddy simulation
,”
Phys. Fluids
27
(
2
),
025105
(
2015
).
37.
R. N.
Zhuchkov
and
A. A.
Utkina
, “
Combining the SSG/LRR-ω differential Reynolds stress model with the detached eddy and laminar-turbulent transition models
,”
Fluid Dyn.
51
(
6
),
733
744
(
2016
).
38.
C.
Mockett
,
A Comprehensive Study of Detached Eddy Simulation
(
Univerlagtuberlin
,
2009
).
39.
G.
Wang
and
Z.
Ye
, “
Mixed element type unstructured grid generation and its application to viscous flow simulation
,” in Proceedings of the
24th International Congress of Aeronautical Sciences
,
Yokohama, Japan
(
2004
).
40.
G.
Wang
,
H. H.
Mian
,
Z. Y.
Ye
, and
J. D.
Lee
, “
Numerical study of transitional flow around NLR-7301 airfoil using correlation-based transition model
,”
J. Aircr.
51
(
1
),
342
350
(
2014
).
41.
Y.
Liu
,
G.
Wang
,
H.
Zhu
, and
Z.
Ye
, “
Numerical analysis of transonic buffet flow around a hammerhead payload fairing
,”
Aerosp. Sci. Technol.
84
,
604
(
2019
).
42.
B.
Ma
,
G.
Wang
,
J.
Ren
,
Z.
Ye
,
Z.
Lei
, and
G.
Zha
, “
Near-field sonic-boom prediction and analysis with hybrid grid Navier–Stokes solver
,”
J. Aircr.
55
(
5
),
1890
1904
(
2018
).
43.
H.
Zhou
,
G.
Wang
,
H. H.
Mian
, and
M.
Qin
, “
Fluid-structure coupled analysis of tandem 2D elastic panels
,”
Aerosp. Sci. Technol.
111
,
106521
(
2021
).
44.
G.
Wang
,
X.
Chen
,
Y.
Xing
, and
Z.
Zeng
, “
Multi-body separation simulation with an improved general mesh deformation method
,”
Aerosp. Sci. Technol.
71
,
763
771
(
2017
).
45.
A.
Harten
and
J. M.
Hyman
, “
Self-adjusting grid methods for one-dimensional hyperbolic conservation laws
,”
J. Comput. Phys.
50
(
2
),
235
269
(
1983
).
46.
T.
Barth
and
D.
Jespersen
, “
The design and application of upwind schemes on unstructured meshes
,” AIAA Paper No. 1989-366,
1989
.
47.
M. L.
Shur
,
P. R.
Spalart
,
M. K.
Strelets
, and
A. K.
Travin
, “
An enhanced version of DES with rapid transition from RANS to LES in separated flows
,”
Flow. Turbul. Combust.
95
(
4
),
709
737
(
2015
).
48.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid‐scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
(
11
),
2746
2757
(
1991
).
49.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid‐scale closure method
,”
Phys. Fluids A
4
(
3
),
633
635
(
1992
).
50.
G.
Comte-Bellot
and
S.
Corrsin
, “
Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated ‘isotropic' turbulence
,”
J. Fluid Mech.
48
(
2
),
273
337
(
1971
).
51.
R. S.
Rogallo
,
Numerical Experiments in Homogeneous Turbulence
(
National Aeronautics and Space Administration
,
1981
), Vol.
81315
.
52.
See https://turbmodels.larc.nasa.gov/Other_LES_Data/2dhill_periodic.html for the detailed geometric definition of the periodic hills configuration.
53.
C. P.
Mellen
,
J.
Fröhlich
, and
W.
Rodi
, “
Large eddy simulation of the flow over periodic hills
,” in
Proceedings of the 16th IMACS World Congress
,
Lausanne, Switzerland
(
2000
).
54.
U.
Piomelli
and
J. R.
Chasnov
, “
Large-eddy simulations: Theory and applications
,”
Turbulence and Transition Modelling
(
Springer
,
Dordrecht
,
1996
), pp.
269
336
.
55.
M.
Breuer
,
N.
Peller
,
C.
Rapp
, and
M.
Manhart
, “
Flow over periodic hills–numerical and experimental study in a wide range of Reynolds numbers
,”
Comput. Fluids
38
(
2
),
433
457
(
2009
).
56.
P.
Balakumar
,
G. I.
Park
, and
B.
Pierce
, “
DNS, LES, and wall-modeled LES of separating flow over periodic hills
,” in
Proceedings of the Summer Program
(
2014
).
57.
G. I.
Park
and
P.
Moin
, “
An improved dynamic non-equilibrium wall-model for large eddy simulation
,”
Phys. Fluids
26
(
1
),
015108
(
2014
).
58.
C.
Coe
and
J.
Nute
, “
Steady and fluctuating pressures at transonic speeds on hammerhead launch vehicles
,”
Report No. NASA TMX-778
, December
1962
.
59.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
), pp.
558
561
.
60.
M.
Xiao
and
Y.
Zhang
, “
Assessment of the SST-IDDES with a shear-layer-adapted subgrid length scale for attached and separated flows
,”
Int. J. Heat Fluid Flow
85
,
108653
(
2020
).
61.
E. K.
Guseva
,
A. V.
Garbaruk
, and
M. K.
Strelets
, “
Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows
,”
Flow Turbul. Combust.
98
(
2
),
481
502
(
2017
).
62.
See https://turbmodels.larc.nasa.gov/flatplate_val.html for the detailed simulation settings of the zero-pressure gradient flat plate case.
63.
K. E.
Schoenherr
, “
Resistance of flat surfaces moving through a fluid
,”
Trans. Soc. Nav. Archit. Mar. Eng.
40
,
279
313
(
1932
).
64.
D.
Coles
, “
The law of the wake in the turbulent boundary layer
,”
J. Fluid Mech.
1
(
2
),
191
226
(
1956
).
You do not currently have access to this content.