Successful propagation of information from high-fidelity sources (i.e., direct numerical simulations and large-eddy simulations) into Reynolds-averaged Navier–Stokes (RANS) equations plays an important role in the emerging field of data-driven RANS modeling. Small errors carried in high-fidelity data can propagate amplified errors into the mean flow field, and higher Reynolds numbers worsen the error propagation. In this study, we compare a series of propagation methods for two cases of Prandtl's secondary flows of the second kind: square-duct flow at a low Reynolds number and roughness-induced secondary flow at a very high Reynolds number. We show that frozen treatments result in less error propagation than the implicit treatment of Reynolds stress tensor (RST), and for cases with very high Reynolds numbers, explicit and implicit treatments are not recommended. Inspired by the obtained results, we introduce the frozen treatment to the propagation of the Reynolds force vector (RFV), which leads to less error propagation. Specifically, for both cases at low and high Reynolds numbers, the propagation of RFV results in one order of magnitude lower error compared to the RST propagation. In the frozen treatment method, three different eddy-viscosity models are used to evaluate the effect of turbulent diffusion on error propagation. We show that, regardless of the baseline model, the frozen treatment of RFV results in less error propagation. We combined one extra correction term for turbulent kinetic energy with the frozen treatment of RFV, which makes our propagation technique capable of reproducing both velocity and turbulent kinetic energy fields similar to high-fidelity data.

1.
J.
Slotnick
,
A.
Khodadoust
,
A.
Juan
,
D.
Darmofal
,
W.
Gropp
,
E.
Lurie
, and
D.
Mavriplis
, “
CFD vision 2030 study: A path to revolutionary computational aerosciences
,”
Technical Report No. NASA/CR-2014-218178
,
NASA
,
2014
.
2.
R. H.
Bush
,
T. S.
Chyczewski
,
K.
Duraisamy
,
B.
Eisfeld
,
C. L.
Rumsey
, and
B. R.
Smith
, “
Recommendations for future efforts in RANS modeling and simulation
,” AIAA Paper No. 2019-0317,
2019
.
3.
K.
Duraisamy
,
G.
Iaccarino
, and
H.
Xiao
, “
Turbulence modeling in the age of data
,”
Annu. Rev. Fluid Mech.
51
,
357
377
(
2019
).
4.
H.
Xiao
and
P.
Cinnella
, “
Quantification of model uncertainty in RANS simulations: A review
,”
Prog. Aerosp. Sci.
108
,
1
31
(
2019
).
5.
J.
Wu
,
H.
Xiao
,
R.
Sun
, and
Q.
Wang
, “
Reynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditioned
,”
J. Fluid Mech.
869
,
553
586
(
2019
).
6.
R. L.
Thompson
,
L. E. B.
Sampaio
,
F. A.
de Bragança Alves
,
L.
Thais
, and
G.
Mompean
, “
A methodology to evaluate statistical errors in DNS data of plane channel flows
,”
Comput. Fluids
130
,
1
7
(
2016
).
7.
J. R.
Andrade
,
R. S.
Martins
,
R. L.
Thompson
,
G.
Mompean
, and
A.
da Silveira Neto
, “
Analysis of uncertainties and convergence of the statistical quantities in turbulent wall-bounded flows by means of a physically based criterion
,”
Phys. Fluids
30
,
045106
(
2018
).
8.
S. V.
Poroseva
,
J. D.
Colmenares F
, and
S. M.
Murman
, “
On the accuracy of RANS simulations with DNS data
,”
Phys. Fluids
28
,
115102
(
2016
).
9.
X.
Guo
,
Z.
Xia
, and
S.
Chen
, “
Computing mean fields with known Reynolds stresses at steady state
,”
Theor. Appl. Mech. Lett.
11
,
100244
(
2021
).
10.
P.
Spalart
and
S.
Allmaras
, “
A one-equation turbulence model for aerodynamic flows
,” AIAA Paper No. 1992-439,
1992
.
11.
R. D.
Sandberg
and
Y.
Zhao
, “
Machine-learning for turbulence and heat-flux model development: A review of challenges associated with distinct physical phenomena and progress to date
,”
Int. J. Heat Fluid Flow
95
,
108983
(
2022
).
12.
J.-P.
Li
,
D.-G.
Tang
,
C.
Yi
, and
C.
Yan
, “
Data-augmented turbulence modeling by reconstructing Reynolds stress discrepancies for adverse-pressure-gradient flows
,”
Phys. Fluids
34
,
045110
(
2022
).
13.
C.
Jiang
,
R.
Vinuesa
,
R.
Chen
,
J.
Mi
,
S.
Laima
, and
H.
Li
, “
An interpretable framework of data-driven turbulence modeling using deep neural networks
,”
Phys. Fluids
33
,
055133
(
2021
).
14.
M. A.
Cruz
,
R. L.
Thompson
,
L. E.
Sampaio
, and
R. D.
Bacchi
, “
The use of the Reynolds force vector in a physics informed machine learning approach for predictive turbulence modeling
,”
Comput. Fluids
192
,
104258
(
2019
).
15.
B. P.
Brener
,
M. A.
Cruz
,
R. L.
Thompson
, and
R. P.
Anjos
, “
Conditioning and accurate solutions of Reynolds average Navier–Stokes equations with data-driven turbulence closures
,”
J. Fluid Mech.
915
,
A110
(
2021
).
16.
J.
Weatheritt
and
R.
Sandberg
, “
The development of algebraic stress models using a novel evolutionary algorithm
,”
Int. J. Heat Fluid Flow
68
,
298
318
(
2017
).
17.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
18.
M.
Schmelzer
,
R. P.
Dwight
, and
P.
Cinnella
, “
Discovery of algebraic Reynolds-stress models using sparse symbolic regression
,”
Flow, Turbul. Combust.
104
,
579
603
(
2020
).
19.
H.
Mandler
and
B.
Weigand
, “
On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application
,”
Int. J. Heat Fluid Flow
97
,
109017
(
2022
).
20.
D.
Willingham
,
W.
Anderson
,
K. T.
Christensen
, and
J. M.
Barros
, “
Turbulent boundary layer flow over transverse aerodynamic roughness transitions: Induced mixing and flow characterization
,”
Phys. Fluids
26
,
025111
(
2014
).
21.
W.
Anderson
,
J. M.
Barros
,
K. T.
Christensen
, and
A.
Awasthi
, “
Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness
,”
J. Fluid Mech.
768
,
316
347
(
2015
).
22.
P.
Forooghi
,
X. I.
Yang
, and
M.
Abkar
, “
Roughness-induced secondary flows in stably stratified turbulent boundary layers
,”
Phys. Fluids
32
,
105118
(
2020
).
23.
A.
Amarloo
,
P.
Forooghi
, and
M.
Abkar
, “
Secondary flows in statistically unstable turbulent boundary layers with spanwise heterogeneous roughness
,”
Theor. Appl. Mech. Lett.
12
,
100317
(
2022
).
24.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
25.
B. E.
Launder
,
G. J.
Reece
, and
W.
Rodi
, “
Progress in the development of a Reynolds-stress turbulence closure
,”
J. Fluid Mech.
68
,
537
566
(
1975
).
26.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
27.
T.-H.
Shih
, “
A realizable Reynolds stress algebraic equation model
,” NASA Technical Memorandum No. 105993,
1993
.
28.
J.-L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
,
074602
(
2018
).
29.
N.
Nikitin
,
N.
Popelenskaya
, and
A.
Stroh
, “
Prandtl's secondary flows of the second kind. problems of description, prediction, and simulation
,”
Fluid Dyn.
56
,
513
538
(
2021
).
30.
A.
Pinelli
,
M.
Uhlmann
,
A.
Sekimoto
, and
G.
Kawahara
, “
Reynolds number dependence of mean flow structure in square duct turbulence
,”
J. Fluid Mech.
644
,
107
122
(
2010
).
31.
R.
McConkey
,
E.
Yee
, and
F.-S.
Lien
, “
A curated dataset for data-driven turbulence modelling
,”
Sci. Data
8
,
255
(
2021
).
32.
W.
Rozema
,
H. J.
Bae
,
P.
Moin
, and
R.
Verstappen
, “
Minimum-dissipation models for large-eddy simulation
,”
Phys. Fluids
27
,
085107
(
2015
).
33.
M.
Abkar
,
H. J.
Bae
, and
P.
Moin
, “
Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows
,”
Phys. Rev. Fluids
1
,
041701
(
2016
).
34.
M.
Abkar
and
P.
Moin
, “
Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model
,”
Boundary-Layer Meteorol.
165
,
405
419
(
2017
).
35.
X. I.
Yang
and
M.
Abkar
, “
A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers
,”
J. Fluid Mech.
842
,
354
(
2018
).
36.
M.
Bastankhah
and
M.
Abkar
, “
Multirotor wind turbine wakes
,”
Phys. Fluids
31
,
085106
(
2019
).
37.
X. I.
Yang
,
S.
Pirozzoli
, and
M.
Abkar
, “
Scaling of velocity fluctuations in statistically unstable boundary-layer flows
,”
J. Fluid Mech.
886
,
A3
(
2020
).
38.
X. I.
Yang
,
P. E.
Chen
,
R.
Hu
, and
M.
Abkar
, “
Logarithmic-linear law of the streamwise velocity variance in stably stratified boundary layers
,”
Boundary-Layer Meteorol.
183
,
199
213
(
2022
).
39.
A.
Eidi
,
N.
Zehtabiyan-Rezaie
,
R.
Ghiassi
,
X.
Yang
, and
M.
Abkar
, “
Data-driven quantification of model-form uncertainty in Reynolds-averaged simulations of wind farms
,”
Phys. Fluids
34
,
085135
(
2022
).
40.
R. J.
Stevens
,
M.
Wilczek
, and
C.
Meneveau
, “
Large-eddy simulation study of the logarithmic law for second-and higher-order moments in turbulent wall-bounded flow
,”
J. Fluid Mech.
757
,
888
907
(
2014
).
41.
J.
Yang
and
W.
Anderson
, “
Numerical study of turbulent channel flow over surfaces with variable spanwise heterogeneities: Topographically-driven secondary flows affect outer-layer similarity of turbulent length scales
,”
Flow, Turbul. Combust.
100
,
1
17
(
2018
).
You do not currently have access to this content.