This work reports studies on flow fields, and instabilities exhibited by opposed jets at equal momenta, for Reynolds numbers (Re) ranging from 178 to 5000 using a large diameter counterflow jet setup. Flow instability investigations were conducted over a range of aspect ratios (α) too. This study identifies the regions of bi-stability and those of oscillatory stagnation plane offsets identified by Re. Experiments on flow field were carried out using particle image velocimetry technique, and the paper presents the axial and radial velocity profiles at various locations as well as their gradients. A decreasing trend in stagnation plane displacements with the Reynolds number was observed. The experiments in comparison with the past literature suggest a possible dependence of the stagnation plane displacements on a nozzle-exit diameter. The trends in maximum stagnation plane displacements (δmax), as well as the critical Reynolds numbers (Recr) with aspect ratios (α), are analyzed and compared. The flow field studies reveal the need for two dimensional axisymmetric simulations with realistic velocity boundary conditions to predict opposed jet flow phenomena accurately. Reacting flow instability studies were also carried out for equal momenta using methane-air and ethylene–air flames at various aspect ratios. The results show an enhanced bistability for ethylene–air flames over methane–air flames.

1.
R. V.
Ravikrishna
and
A. B.
Sahu
, “
Advances in understanding combustion phenomena using non-premixed and partially premixed counterflow flames: A review
,”
Int. J. Spray Combust. Dyn.
10
,
38
(
2018
).
2.
Y.
Wang
and
S. H.
Chung
, “
Soot formation in laminar counterflow flames
,”
Prog. Energy Combust. Sci.
74
,
152
(
2019
).
3.
H.
Tsuji
, “
Counterflow diffusion flames
,”
Prog. Energy Combust. Sci.
8
,
93
(
1982
).
4.
D. G.
Park
,
S. H.
Chung
, and
M. S.
Cha
, “
Bidirectional ionic wind in nonpremixed counterflow flames with DC electric field
,”
Combust. Flame
168
,
138
(
2016
).
5.
J.
Du
and
R. L.
Axelbaum
, “
The effects of flame structure on extinction of CH4-O2-N2 diffusion flames
,”
Symp. Combust.
26
,
1137
(
1996
).
6.
S.
Akaotsu
,
Y.
Matsushita
,
H.
Aoki
, and
W.
Malalasekera
, “
Analysis of flame structure using detailed chemistry and applicability of flamelet/progress variable model in the laminar counter-flow diffusion flames of pulverized coals
,”
Adv. Powder Technol.
31
,
1302
(
2020
).
7.
C. J.
Sung
,
J. B.
Liu
, and
C. K.
Law
, “
On the structural response of counterflow diffusion flames to strain rate variations
,”
Combust. Flame
102
,
481
(
1995
).
8.
S. V.
Naik
and
N. M.
Laurendeau
, “
LIF measurements and chemical kinetic analysis of nitric oxide formation in high-pressure counterflow partially premixed and nonpremixed flames
,”
Combust. Sci. Technol.
176
,
1809
(
2004
).
9.
A. B.
Sahu
and
R. V.
Ravikrishna
, “
Quantitative LIF measurements and kinetics assessment of NO formation in H2/CO syngas–air counterflow diffusion flame
,”
Combust. Flame
173
,
208
(
2016
).
10.
B. G.
Sarnacki
,
G.
Esposito
,
R. H.
Krauss
, and
H. K.
Chelliah
, “
Extinction limits and associated uncertainties of nonpremixed counterflow flames of methane, ethylene, propylene, and n-butane in air
,”
Combust. Flame
159
,
1026
(
2012
).
11.
W.
Wang
,
A. E.
Karataş
,
C. P. T.
Groth
, and
Ö. L.
Gülder
, “
Combined experimental and numerical study of ethanol laminar flame extinction
,”
Combust. Sci. Technol.
190
,
1472
(
2018
).
12.
P.
Navaneethakrishnan
and
K. S.
Giri
, “
2D axisymmetric modelling of CH4O2/N2 counterflow diffusion flames
,” in
13th Asia-Pacific Conference on Combustion (ASPACC 2021)
,
2021
.
13.
K. T.
Kang
,
J. Y.
Hwang
,
S. H.
Chung
, and
W.
Lee
, “
Soot zone structure and sooting limit in diffusion flames: comparison of counterflow and co-flow flames
,”
Combust. Flame
109
,
266
(
1997
).
14.
I.
Glassman
, “
Soot formation in combustion processes
,”
Symp. Combust.
22
,
295
(
1989
).
15.
A.
Kalbhor
and
J.
van Oijen
, “
Effects of hydrogen enrichment and water vapour dilution on soot formation in laminar ethylene counterflow flame
,”
Int. J. Hydrogen Energy
45
,
23653
(
2020
).
16.
W.
Xie
,
W.
Wu
,
Z.
Ren
,
H.
Liu
, and
M.
Ihme
, “
Effects of evaporation on chemical reactions in counterflow spray flames
,”
Phys. Fluids
33
,
065115
(
2021
).
17.
M.
Pfitzner
and
P.
Breda
, “
An analytic probability density function for partially premixed flames with detailed chemistry
,”
Phys. Fluids
33
,
035117
(
2021
).
18.
R.
Seiser
,
H.
Pitsch
,
K.
Seshadri
,
W. J.
Pitz
, and
H. J.
Curran
, “
Extinction and autoignition of n-heptane in counterflow configuration
,”
Proc. Combust. Inst.
28
,
2029
(
2000
).
19.
S.
Bonturi
,
M.
Pourkashanian
,
A.
Williams
,
G.
Oskam
,
C.
Wilson
,
M.
Pourkashanian
,
A.
Williams
, and
G.
Oskam
, “
NOx formation in counter-flow opposed-jet diffusion CH4/air flames NOx formation in counter-flow opposed-jet diffusion CH4/air flame
,”
Combust. Sci. Technol.
121
,
217
(
1996
).
20.
S.
Som
,
A. I.
Ramírez
,
J.
Hagerdorn
,
A.
Saveliev
, and
S. K.
Aggarwal
, “
A numerical and experimental study of counterflow syngas flames at different pressures
,”
Fuel
87
,
319
(
2008
).
21.
O.
Gicquel
,
N.
Darabiha
, and
D.
Thévenin
, “
Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion
,”
Proc. Combust. Inst.
28
,
1901
(
2000
).
22.
Y.
Zhang
,
W.
Shen
,
H.
Zhang
,
Y.
Wu
, and
J.
Lu
, “
Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames
,”
Fuel
157
,
115
(
2015
).
23.
H. K.
Chelliah
,
P. C.
Wanigarathne
,
A. M.
Lentati
,
R. H.
Krauss
, and
G. S.
Fallon
, “
Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flame
,”
Combust. Flame
134
,
261
(
2003
).
24.
P.
Singh
,
X.
Hui
, and
C. J.
Sung
, “
Soot formation in non-premixed counterflow flames of butane and butanol isomers
,”
Combust. Flame
164
,
167
(
2016
).
25.
S. N.
Vaden
,
R. L.
Debes
,
E. L.
Lash
,
R. S.
Burk
,
C. M.
Boyd
,
L. G.
Wilson
, and
G. L.
Pellett
, “
Unsteady extinction of opposed jet ethylene/methane HIFiRE surrogate fuel mixtures vs air
,” in
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition
,
2009
.
26.
S.
Park
,
Y.
Wang
,
S. H.
Chung
, and
S. M.
Sarathy
, “
Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels
,”
Combust. Flame
178
,
46
(
2017
).
27.
S.
Jahangirian
,
C. S.
McEnally
, and
A.
Gomez
, “
Experimental study of ethylene counterflow diffusion flames perturbed by trace amounts of jet fuel and jet fuel surrogates under incipiently sooting conditions
,”
Combust. Flame
156
,
1799
(
2009
).
28.
A. E.
Lutz
,
R. J.
Kee
,
J. F.
Grcar
, and
F. M.
Rupley
, “
OPPDIF: A Fortran program for computing opposed-flow diffusion flames
,”
Report No. SAND96-8243
(
Sandia National Laboratories
,
1997
).
29.
R. J.
Kee
,
J. A.
Miller
,
G. H.
Evans
, and
G.
Dixon-Lewis
, “
A computational model of the structure and extinction of strained opposed flow, premixed methane-air flames
,”
Symp. Combust.
22
,
1479
(
1989
).
30.
K.
Seshadri
and
F. A.
Williams
, “
Laminar flow between parallel plates with injection of a reactant at high Reynolds number
,”
Int. J. Heat Mass Transfer
21
,
251
(
1978
).
31.
J. C.
Rolon
,
D.
Veynante
,
J. P.
Martin
, and
F.
Durst
, “
Counter jet stagnation flows
,”
Exp. Fluids
11
,
313
(
1991
).
32.
R. P.
Pawlowski
,
A. G.
Salinger
,
J. N.
Shadid
, and
T. J.
Mountziaris
, “
Bifurcation and stability analysis of laminar isothermal counterflowing jets
,”
J. Fluid Mech.
551
,
117
(
2006
).
33.
A.
Ansari
,
K. K.
Chen
,
R. R.
Burrell
, and
F. N.
Egolfopoulos
, “
Effects of confinement, geometry, inlet velocity profile, and Reynolds number on the asymmetry of opposed-jet flows
,”
Theor. Comput. Fluid Dyn.
32
,
349
(
2018
).
34.
A.
Sharon
and
Y.
Levy
, “
Bistability analysis of opposed jet combustor under cold and reacting flow conditions
,”
Phys. Fluids
33
,
034126
(
2021
).
35.
A.
Ciani
,
W.
Kreutner
,
W.
Hubschmid
,
C. E.
Frouzakis
, and
K.
Boulouchos
, “
Experimental investigation of the morphology and stability of diffusion and edge flames in an opposed jet burner
,”
Combust. Flame
150
,
188
(
2007
).
36.
N.
Hasan
and
S. A.
Khan
, “
Two-dimensional interactions of non-isothermal counter-flowing streams in an adiabatic channel with aiding and opposing buoyancy
,”
Int. J. Heat Mass Transfer
54
,
1150
(
2011
).
37.
W.
Zhang
,
Z.
Chai
,
Z.
Guo
, and
B.
Shi
, “
Lattice Boltzmann study of flow and temperature structures of non-isothermal laminar impinging streams
,”
Commun. Comput. Phys.
13
,
835
(
2013
).
38.
X.
Grandchamp
,
Y.
Fujiso
,
B.
Wu
, and
A.
Van Hirtum
, “
Steady laminar axisymmetrical nozzle flow at moderate Reynolds numbers: Modeling and experiment
,”
J. Fluids Eng. Trans. ASME
134
,
011203
(
2012
).
39.
P.
Navaneethakrishnan
and
K. S.
Giri
, “
On flame extinction and free-floating limits using a large diameter opposed jet burner
,”
Combust. Sci. Technol.
(published online) (
2022
).
40.
A.
Ciani
,
W.
Kreutner
,
C. E.
Frouzakis
,
K.
Lust
,
G.
Coppola
, and
K.
Boulouchos
, “
An experimental and numerical study of the structure and stability of laminar opposed-jet flows
,”
Comput. Fluids
39
,
114
(
2010
).
41.
J.
Awrejcewicz
and
P.
Hagedorn
,
Nonlinearity, Bifurcation and Chaos—Theory and Applications
(
IntechOpen
,
London
,
2012
).
42.
G.
Looss
and
D. D.
Joseph
,
Elementary Stability and Bifurcation Theory
(
Springer
,
New York
,
1990
).
43.
Warjito
,
Budiarso
,
I. A.
Pramono
,
M. L.
Samosir
, and
D.
Adanta
, “
The effect of nozzle diameter on the flow characteristics of air entrainment phenomenon in vertical plunging jets
,”
AIP Conf. Proc.
2062
,
020026
(
2019
).
You do not currently have access to this content.