A theoretical physical model of gas–solid two-phase flow mixed dielectric discharge in a uniform field based on Townsend's discharge theory is presented. This model extends the classical Townsend's theory to be applicable to the quantitative analysis of dielectric discharge questions related to gas–solid two-phase flow environments, reveals the influence mechanism of flowing gases and solid-phase particles on discharge, and provides a theoretical basis for expanding the application of discharge plasma technology in various fields. In the model, based on the basic physical process of gas discharge and our previous studies, the effects of the attraction and obstructive factors of solid-phase particles on the number density of electrons or ions and the local space electric field in the inception and development of gas discharge were taken into account. On this basis, the analytical expression of the breakdown voltage in a gas–solid two-phase flow mixed dielectric is obtained, Paschen's law of gas breakdown is modified, and Townsend's breakdown criterion for gas–solid two-phase flow situation is proposed. It is shown that the breakdown voltage of the gas–solid two-phase flow mixed dielectric decreases with increasing gas flow velocity. The gas flow velocity is the main factor affecting the variation trend of the breakdown voltage. The concentration and size of solid-phase particles determine the values of breakdown voltage. The breakdown voltage of the smaller size and higher concentration of solid-phase particles is greater, which has a stronger suppression effect on the discharge.

1.
H. P.
Li
,
D. R.
Yu
,
W. T.
Sun
,
D. X.
Liu
,
J.
Li
,
X. W.
Han
,
Z. Y.
Li
,
B.
Sun
, and
Y.
Wu
, “
State-of-the-art of atmospheric discharge plasmas
,”
High Voltage Eng.
42
,
3697
3727
(
2016
).
2.
D. H.
Mei
,
Z.
Fang
, and
T.
Shao
, “
Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas
,”
Proc. CSEE
40
,
1339
1358
(
2020
).
3.
X.
Yin
,
X.
Zhang
,
Y.
Kang
,
G.
Cao
,
S.
Peng
, and
G.
Wu
, “
Breakdown voltage of needle-plate air gaps in high-speed sand environment
,”
High Voltage Eng.
44
,
3973
3978
(
2018
).
4.
B.
He
,
G.
Zhang
,
B.
Chen
,
N.
Gao
,
Y.
Li
,
Z.
Peng
, and
H.
Jin
, “
The influence of sand/dust environment on air gap breakdown discharge characteristics of plate-plate electrode
,”
Sci. China Phys. Mech. Astron.
53
,
458
464
(
2010
).
5.
W.
SiMa
,
Q.
Yang
,
G.
Ma
,
C.
Jiang
,
L.
Wu
, and
H.
Cheng
, “
Experiments and analysis of sand dust flashover of the flat plate model
,”
IEEE Trans. Dielect. Electr. Insul.
17
,
572
581
(
2010
).
6.
J.
Wang
,
Z. F.
Tu
,
B.
Chen
,
Z. H.
He
, and
Z. Y.
Zhang
, “
Effect of sand and dust on lightning pulse breakdown characteristics in bar-plate air gap
,”
High Voltage Eng.
46
,
1013
1018
(
2020
).
7.
B.
He
,
H.
Zhao
,
C.
Chen
,
S. M.
Liu
, and
Z. R.
Peng
, “
Influence of wind speed and dust particle size on the corona characteristics of ± 1100 kV fitting models
,”
IEEE Trans. Dielect. Electr. Insul.
24
,
2432
2439
(
2017
).
8.
Y. P.
Liu
,
Z.
Lei
,
F. C.
Lu
, and
Z. J.
Hong
, “
corona onset characteristics of the 750-kV bundle conductor in sand and dust weather in high-altitude area
,”
IEEE Trans. Power Delivery
29
,
615
623
(
2014
).
9.
Z. L.
Zou
,
D. Y.
Li
,
J. Y.
Xu
,
X.
Cui
,
T. B.
Lu
, and
X. M.
Bian
, “
Impact of fine particles on the direct current electric field of the conductor due to corona discharge
,”
J. Electrostat.
88
,
106
110
(
2017
).
10.
W. H.
Bailey
,
G. B.
Johnson
,
J.
Bishop
,
T.
Hetrick
, and
S.
Steave
, “
Measurements of charged aerosols near ± 500 kV DC transmission lines and in other environments
,”
IEEE Trans. Power Delivery
27
,
371
379
(
2012
).
11.
E. W. B.
Gill
, “
Frictional electrification of sand
,”
Nature
162
,
568
569
(
1948
).
12.
J.
Latham
, “
The electrification of snowstorms and sandstorms
,”
Q. J. R. Met. Soc.
90
,
91
95
(
1964
).
13.
D. S.
Schmidt
,
R. A.
Schmidt
, and
J. D.
Dent
, “
Electrostatic force on saltating sand
,”
J. Geophys. Res.
103
,
8997
9001
, (
1998
).
14.
X. J.
Zheng
,
L.
He
, and
Y. H.
Zhou
, “
Theoretical model of the electric field produced by charged particles in windblown sand flux
,”
J. Geophys. Res.
109
,
D15208
, (
2004
).
15.
R.
Gouri
,
N.
Zouzou
, and
A.
Tilmatine
, “
Collection efficiency of sub-micrometre particles using single and double DBD in a wire-to-square tube ESP
,”
J. Phys. D: Appl. Phys.
44
,
495201
(
2011
).
16.
A.
Marquard
,
J.
Meyer
, and
G.
Kasper
, “
Influence of corona quenching on charging and collection of nanoparticles
,” in
International Society for Electrostatic Precipitation Conference
, Mpumalanga, South Africa (
ISESP
,
2004
), pp.
1
11
.
17.
X. B.
Meng
,
J. X.
Zhu
, and
H.
Zhang
, “
The characteristics of current density distribution during corona charging processes of different particulates
,”
J. Phys. D: Appl. Phys.
41
,
172007
(
2008
).
18.
Y.
Zhuang
,
Y. J.
Kim
, and
T. G.
Lee
, “
Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators
,”
J. Electrostat.
48
,
245
260
(
2000
).
19.
M. R.
Talaie
,
M.
Taheri
, and
J.
Fathikaljahi
, “
A new method to evaluate the voltage–current characteristics applicable for a single-stage electrostatic precipitator
,”
J. Electrostat.
53
,
221
233
(
2001
).
20.
M. R.
Talaie
, “
Mathematical modeling of wire-duct single-stage electrostatic precipitators
,”
J. Hazard. Mater.
124
,
44
52
(
2005
).
21.
K.
Adamiak
and
P.
Atten
, “
Numerical simulation of the 2D gas flow modified by the action of charged fine particles in a single-wire ESP
,”
IEEE Trans. Dielect. Electr. Insul.
16
,
608
614
(
2009
).
22.
N.
Farnoosh
,
K.
Adamiak
, and
G. S. P.
Castle
, “
3-D Numerical simulation of particle concentration effect on a single-wire ESP performance for collecting poly-dispersed particles
,”
IEEE Trans. Dielect. Electr. Insul.
18
,
211
220
(
2011
).
23.
D. A.
Mendis
, “
Progress in the study of dusty plasmas
,”
Plasma Sources Sci. Technol.
11
,
A219
228
(
2002
).
24.
L.
Boufendi
,
M. C.
Jouanny
,
E.
Kovacevic
,
J.
Berndt
, and
M.
Mikikian
, “
Dusty plasma for nanotechnology
,”
J. Phys. D: Appl. Phys.
44
,
174035
(
2011
).
25.
N. Y.
Babaeva
,
A. N.
Bhoj
, and
M. J.
Kushner
, “
Streamer dynamics in gases containing dust particles
,”
Plasma Sources Sci. Technol.
15
,
591
602
(
2006
).
26.
N. Y.
Babaeva
, “
Effect of inhomogeneities on streamer propagation. I. Intersection with isolated bubbles and particles
,”
Plasma Sources Sci. Technol.
18
,
035009
(
2009
).
27.
P. G.
Shi
and
D. Z.
Wang
, “
Numerical simulation of pulsed corona discharge with dust particles at atmospheric pressure
,”
Phys. Plasma
12
,
043505
(
2005
).
28.
K. B.
Chai
,
C. R.
Seon
,
C. W.
Chung
,
N. S.
Yoon
, and
W.
Choe
, “
Correlation between nanoparticle and plasma parameters with particle growth in dusty plasmas
,”
J. Appl. Phys.
109
,
013312
(
2011
).
29.
D. N.
Polyakov
,
V. V.
Shumova
,
L. M.
Vasilyak
, and
V. E.
Fortov
, “
Study of glow discharge positive column with cloud of disperse particles
,”
Phys. Lett. A
375
,
3300
3305
(
2011
).
30.
R. H.
Tian
,
C. X.
Yuan
,
H.
Li
,
Y. G.
Liang
,
J.
Wu
,
A. A.
Kudryavtsev
,
G. V.
Kirsanov
,
Z. X.
Zhou
, and
Y. Y.
Jiang
, “
Influence of dust particles on positive column of DC glow discharge
,”
J. Appl. Phys.
123
,
103301
(
2018
).
31.
G. I.
Sukhinin
and
A. V.
Fedoseev
, “
Influence of dust-particle concentration on gas-discharge plasma
,”
Phys. Rev. E
81
,
016402
(
2010
).
32.
A.
Fridman
,
A.
Chirokov
, and
A.
Gutsol
, “
Non-thermal atmospheric pressure discharges
,”
J. Phys. D: Appl. Phys.
38
,
R01
R24
(
2005
).
33.
A.
Ohsawa
,
R.
Morrow
, and
A. B.
Murphy
, “
An investigation of a dc dielectric barrier discharge using a disc of glass beads
,”
J. Phys. D: Appl. Phys.
33
,
1487
1492
(
2000
).
34.
A. B.
Murphy
and
R.
Morrow
, “
Glass sphere discharges for ozone production
,”
IEEE Trans. Plasma Sci.
30
,
180
181
(
2002
).
35.
Q. Z.
Ye
,
T.
Zhang
,
F.
Lu
,
J.
Li
,
Z. H.
He
, and
F. C.
Lin
, “
Dielectric barrier discharge in a two-phase mixture
,”
J. Phys. D: Appl. Phys.
41
,
025207
(
2008
).
36.
H. M.
Deng
,
Z. H.
He
,
Y. H.
Xu
,
J.
Ma
,
J. X.
Liu
, and
R. K.
Guo
, “
An investigation on two-phase mixture discharges: The effects of macroparticle sizes
,”
J. Phys. D: Appl. Phys.
43
,
255203
(
2010
).
37.
W. J.
Yao
,
Z. H.
He
,
H. M.
Deng
,
J.
Li
, and
H.
Ma
, “
Experimental investigation of two-phase mixture discharges under DC voltage from effects of macro-particle sizes
,”
IEEE Trans. Plasma Sci.
39
,
856
864
(
2011
).
38.
Q. Z.
Ye
,
J.
Li
, and
Z. H.
Xie
, “
Analytical model of the breakdown mechanism in a two-phase mixture
,”
J. Phys. D: Appl. Phys.
37
,
3373
3382
(
2004
).
39.
Q. Z.
Ye
,
J.
Li
, and
F.
Lu
, “
Abnormal breakdown characteristic in a two-phase mixture
,”
J. Phys. D: Appl. Phys.
39
,
2198
2204
(
2006
).
40.
Y. Q.
Kang
,
G. N.
Wu
,
X. Q.
Zhang
,
Y. J.
Liu
,
C. Q.
Shi
,
W. F.
Wei
, and
G. Q.
Gao
, “
Modeling of flowing gas discharge. I
,”
IEEE Trans. Dielectr. Electr. Insul.
26
,
1048
1055
(
2019
).
41.
Y. Q.
Kang
,
G. N.
Wu
,
X. Q.
Zhang
,
Y. J.
Liu
,
C. Q.
Shi
,
W. F.
Wei
, and
G. Q.
Gao
, “
Verification and analysis of flowing gas discharge. II
,”
IEEE Trans. Dielect. Electr. Insul.
26
,
1056
1063
(
2019
).
42.
Y. Q.
Kang
,
X. Q.
Zhang
,
C. Q.
Shi
,
Y.
Zhou
,
Y. J.
Liu
,
G. Q.
Gao
,
W. F.
Wei
, and
G. N.
Wu
, “
Breakdown characteristics and mechanisms of short needle-plate air gap in high-speed airflow
,”
IEEE Trans. Plasma Sci.
45
,
2406
2415
(
2017
).
43.
C.
Li
,
Y. C.
Zhang
, and
C. B.
Lee
, “
Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: The effect of first mode
,”
Phys. Fluids
32
,
051701
(
2020
).
44.
Y. C.
Zhang
,
C.
Li
, and
C. B.
Lee
, “
Influence of glow discharge on evolution of disturbance in a hypersonic boundary layer: The effect of second mode
,”
Phys. Fluids
32
,
071702
(
2020
).
45.
Q. Z.
Ye
,
J.
Li
, and
J. C.
Zhang
, “
A dipole-enhanced approximation for a dielectric mixture
,”
J. Electrostat.
61
,
99
106
(
2004
).
46.
L. K.
Wang
,
Y. T.
Hung
, and
N. C.
Pereira
,
Air Pollution Control Engineering
(
Tsinghua University Press
,
Beijing
,
2000
).
47.
Y. Q.
Kang
,
Z. P.
Shi
, and
S. B.
Li
, “
Modeling of strong wind-sand dielectric streamer discharge
,”
Math. Probl. Eng.
2022
,
8998922
.
You do not currently have access to this content.