Aqueous foams are useful in several applications, especially to reduce liquid loading in the oil and gas industry. The rheology of these foams evolves rapidly, and suitable constitutive models are required to describe the resulting multiphase flow. We describe a new experimental setup for advanced rheometry involving 4-arm and 12-arm vane-in-textured-cup toolsets. The cup was designed to provide in situ foaming to minimize injection times and flow-history artifacts before measurement, while the 12-arm vane was selected to eliminate slip and generate a homogeneous stress field in a weak foam. Using these tools, we measure the decay of linear viscoelasticity and yield stress and link the rheological evolution to optical measurements of the bubble size distribution. Time-resolved rheological measurements of the full flow curve of an aging foam are performed and used to construct a rheological master curve. Measurements of the transient linear viscoelastic response and observations of the bubble size distribution show that foams, after an initial induction period, experience an increase in the Sauter mean bubble radius that scales as t1/2. Using the well-known Princen and Kiss model as a framework, we define a single unique time-dependent shift factor that varies with the Sauter mean bubble radius and enables us to use the rheological master curve to predict the temporal evolution of the foam's elastic and steady-state viscoplastic properties.

1.
Atkinson
,
C.
, and
Sherwood
,
J. D.
, “
The torque on a rotating n-bladed vane in a Newtonian fluid or linear elastic medium
,”
Proc. R. Soc. London, Ser. A
438
(
1902
),
183
196
(
1992
).
2.
Barik
,
T. K.
, and
Roy
,
A.
, “
Statistical distribution of bubble size in wet foam
,”
Chem. Eng. Sci.
64
(
9
),
2039
2043
(
2009
).
3.
Bogdanovic
,
M.
,
Gajbhiye
,
R. N.
, and
Kam
,
S. I.
, “
Experimental study of foam flow in horizontal pipes: Two flow regimes and its implications
,”
Colloids Surf., A
344
,
56
71
(
2009
).
4.
Briceno
,
M. I.
, and
Joseph
,
D. D.
, “
Self-lubricated transport of aqueous foams in horizontal conduits
,”
Int. J. Multiphase Flow
29
(
12
),
1817
1831
(
2003
).
5.
Calvert
,
J. R.
, and
Nezhati
,
K.
, “
A rheological model for a liquid-gas foam
,”
Int. J. Heat Fluid Flow
7
(
3
),
164
168
(
1986
).
6.
Cantat
,
I.
,
Cohen-Addad
,
S.
,
Elias
,
F.
,
Graner
,
F.
,
Hohler
,
R.
,
Pitois
,
O.
,
Rouyer
,
F.
, and
Saint-Jalmes
,
A.
,
Foams Structure and Dynamics
(
Oxford University Press
,
2013
).
7.
Carraretto
,
I. M.
,
Pari
,
D.
,
Fasani
,
D.
,
Lucchini
,
A.
,
Guilizzoni
,
M. G.
, and
Colombo
,
L. P. M.
, “
Holdup measurements of aqueous foam flows and flow regime characterization through image processing
,”
SPE Prod. Oper.
36
,
976
(
2021
).
8.
Caton
,
F.
, and
Baravian
,
C.
, “
Plastic behavior of some yield stress fluids: from creep to long-time yield
,”
Rheol. Acta
47
(
5–6
),
601
607
(
2008
).
9.
Chaparian
,
E.
,
Owens
,
C. E.
, and
McKinley
,
G. H.
, “
Computational rheometry of yielding and viscoplastic flow in vane-and-cup rheometer fixtures
,”
J. Non-Newtonian Fluid Mech.
307
,
104857
(
2022
).
10.
Cohen-Addad
,
S.
,
Hoballah
,
H.
, and
Höhler
,
R.
, “
Viscoelastic response of a coarsening foam
,”
Phys. Rev. E
57
(
6
),
6897
6901
(
1998
).
11.
Cohen-Addad
,
S.
, and
Höhler
,
R.
, “
Rheology of foams and highly concentrated emulsions
,”
Curr. Opin. Colloid Interface Sci.
19
(
6
),
536
548
(
2014
).
12.
Collias
,
D. I.
, and
Baird
,
D. G.
, “
Tesile toughness of microcellular foams of polystyrene, styrene‐acrylonitrile copolymer, and polycarbonate, and the effect of dissolved gas on the tensile toughness of the same polymer matrices and microcellular foams
,”
Polym. Eng. Sci.
35
(
14
),
1167
1177
(
1995
).
13.
Collias
,
D. I.
,
Baird
,
D. G.
, and
Borggreve
,
R. J. M.
, “
Impact toughening of polycarbonate by microcellular foaming
,”
Polymer
35
(
18
),
3978
3983
(
1994
).
14.
Colombo
,
L. P. M.
,
Carraretto
,
I. M.
,
Di Lullo
,
A. G.
,
Passucci
,
C.
, and
Allegrucci
,
A.
, “
Experimental study of aqueous foam generation and transport in a horizontal pipe for deliquification purposes
,”
Exp. Therm. Fluid Sci.
98
,
369
380
(
2018
).
15.
Coussot
,
P.
,
Tabuteau
,
H.
,
Chateau
,
X.
,
Tocquer
,
L.
, and
Ovarlez
,
G.
, “
Aging and solid or liquid behavior in pastes
,”
J. Rheol.
50
(
6
),
975
994
(
2006
).
16.
Dall'Acqua
,
D.
,
Benucci
,
M.
,
Corvaro
,
F.
,
Leporini
,
M.
,
Cocci Grifoni
,
R.
,
Del Monaco
,
A.
,
Lullo
,
A. D.
,
Passucci
,
C.
, and
Marchetti
,
B.
, “
Experimental results of pipeline dewatering through surfactant injection
,”
J. Pet. Sci. Eng.
159
,
542
552
(
2017
).
17.
Dinkgreve
,
M.
,
Paredes
,
J.
,
Denn
,
M. M.
, and
Bonn
,
D.
, “
On different ways of measuring ‘the’ yield stress
,”
J. Non-Newtonian Fluid Mech.
238
,
233
241
(
2016
).
18.
Divoux
,
T.
,
Grenard
,
V.
, and
Manneville
,
S.
, “
Rheological hysteresis in soft glassy materials
,”
Phys. Rev. Lett.
110
(
1
),
018304
(
2013
).
19.
Dollet
,
B.
, and
Raufaste
,
C.
, “
Rheology of aqueous foams
,”
C. R. Phys.
15
(
8–9
),
731
747
(
2014
).
20.
Durian
,
D. J.
,
Weitz
,
D. A.
, and
Pine
,
D. J.
, “
Scaling behavior in shaving cream
,”
Phys. Rev. A
44
,
R7902
(
1991
).
21.
Ellis
,
A. L.
, and
Lazidis
,
A.
, in
Foams for Food Applications BT—Polymers for Food Applications
, edited by
Tomy J
Gutiérrez
(
Springer International Publishing
,
Cham
,
2018
), pp.
271
327
.
22.
Ewoldt
,
R. H.
, and
McKinley
,
G. H.
, “
Creep ringing in rheometry or how to deal with oft-discarded data in step stress tests!
,”
Rheol. Bull.
76
,
4
6
(
2007
).
23.
Gajbhiye
,
R. N.
, and
Kam
,
S. I.
, “
Characterization of foam flow in horizontal pipes by using two-flow-regime concept
,”
Chem. Eng. Sci.
66
(
8
),
1536
1549
(
2011
).
24.
Gopal
,
A. D.
, and
Durian
,
D. J.
, “
Relaxing in foam
,”
Phys. Rev. Lett.
91
(
18
),
188303
(
2003
).
25.
Gunton
,
J. D.
,
San Miguel
,
M.
, and
Sahni
,
P. S.
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
, and
J. L.
Lebowitz
(
Academic London
,
1983
).
26.
Herzhaft
,
B.
,
Kakadjian
,
S.
, and
Moan
,
M.
, “
Measurement and modeling of the flow behavior of aqueous foams using a recirculating pipe rheometer
,”
Colloids Surf., A
263
(
1–3
),
153
164
(
2005
).
27.
Hilgenfeldt
,
S.
,
Koehler
,
S. A.
, and
Stone
,
H. A.
, “
Dynamics of coarsening foams: Accelerated and self-limiting drainage
,”
Phys. Rev. Lett.
86
(
20
),
4704
4707
(
2001
).
28.
Höhler
,
R.
, and
Cohen-Addad
,
S.
, “
Rheology of liquid foam
,”
J. Phys.: Condens. Matter
17
(
41
),
R1041
(
2005
).
29.
Khan
,
S. A.
, and
Armstrong
,
R. C.
, “
Rheology of foams: I. Theory for dry foams
,”
J. Non-Newtonian Fluid Mech.
22
,
1
22
(
1986
).
30.
Khan
,
S. A.
, and
Armstrong
,
R. C.
, “
Rheology of foams: II. Effects of polydispersity and liquid viscosity for foams having gas fraction approaching unity
,”
J. Non-Newtonian Fluid Mech.
25
,
61
92
(
1987
).
31.
Lambert
,
G. M.
, and
Baird
,
D. G.
, “
Evaluating rigid and semiflexible fiber orientation evolution models in simple flows
,”
J. Manuf. Sci. Eng., Trans. ASME
139
(
3
),
031012
(
2017
).
32.
Mours
,
M.
, and
Winter
,
H. H.
, “
Time-resolved rheometry
,”
Rheol. Acta
33
,
385
397
(
1994
).
33.
Nguyen
,
Q. D.
, and
Boger
,
D. V.
, “
Characterization of yield stress fluids with concentric cylinder viscometers
,”
Rheol. Acta
26
(
6
),
508
515
(
1987
).
34.
Ovarlez
,
G.
,
Cohen-Addad
,
S.
,
Krishan
,
K.
,
Goyon
,
J.
, and
Coussot
,
P.
, “
On the existence of a simple yield stress fluid behavior
,”
J. Non-Newtonian Fluid Mech.
193
,
68
79
(
2013
).
35.
Ovarlez
,
G.
,
Rodts
,
S.
,
Chateau
,
X.
, and
Coussot
,
P.
, “
Phenomenology and physical origin of shear localization and shear banding in complex fluids
,”
Rheol. Acta
48
(
8
),
831
844
(
2009
).
36.
Owens
,
C. E.
,
Hart
,
A. J.
, and
McKinley
,
G. H.
, “
Improved rheometry of yield stress fluids using bespoke fractal 3D printed vanes
,”
J. Rheol.
64
(
3
),
643
662
(
2020
).
37.
Parikh
,
D.
,
Wu
,
Y.
,
Peterson
,
C.
,
Jarriel
,
S.
,
Mooney
,
M.
, and
Tilton
,
N.
, “
The coupled dynamics of foam generation and pipe flow
,”
Int. J. Heat Fluid Flow
79
,
108442
(
2019
).
38.
Pitois
,
O.
, and
Rouyer
,
F.
, “
Rheology of particulate rafts, films, and foams
,”
Curr. Opin. Colloid Interface Sci.
43
,
125
137
(
2019
).
39.
Polyanin
,
A. D.
,
Kutepov
,
A. M.
,
Vyazmin
,
A. V.
, and
Kazenin
,
D. A.
, “
Foams: Structure and some properties
,” in
Hydrodynamics, Mass and Heat Transfer in Chemical Engineering
(
CRC Press
,
2002
).
40.
Princen
,
H. M.
, “
Rheology of foams and highly concentrated emulsions. I. Elastic properties and yield stress of a cylindrical model system
,”
J. Colloid Interface Sci.
91
(
1
),
160
165
(
1983
).
41.
Princen
,
H. M.
, “
Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions
,”
J. Colloid Interface Sci.
105
(
1
),
150
171
(
1985
).
42.
Princen
,
H. M.
, “
A novel design to eliminate end effects in a concentric cylinder viscometer
,”
J. Rheol.
30
(
2
),
271
283
(
1986
).
43.
Princen
,
H. M.
, and
Kiss
,
A. D.
, “
Rheology of foams and highly concentrated emulsions. III. Static shear modulus
,”
J. Colloid Interface Sci.
112
(
2
),
427
437
(
1986
).
44.
Princen
,
H. M.
, and
Kiss
,
A. D.
, “
Rheology of foams and highly concentrated emulsions. IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions
,”
J. Colloid Interface Sci.
128
(
1
),
176
187
(
1989
).
45.
Qian
,
C.
, and
Baird
,
D. G.
, “
The transient shear rheology of a thermotropic liquid crystalline polymer in the super-cooled state
,”
Polymer
102
,
63
72
(
2016
).
46.
Saint-Jalmes
,
A.
, “
Physical chemistry in foam drainage and coarsening
,”
Soft Matter
2
(
10
),
836
849
(
2006
).
47.
Saint-Jalmes
,
A.
,
Durian
,
D. J.
, and
Weitz
,
D. A.
, “
Foams
,” in
Encyclopedia of Chemical Technology
, edited by
Kirk‐Othmer
(
John Wiley & Sons, Inc.
,
2012
).
48.
Saint-Jalmes
,
A.
, and
Langevin
,
D.
, “
Time evolution of aqueous foams: Drainage and coarsening
,”
J. Phys.: Condens. Matter
14
(
40
),
9397
9412
(
2002
).
49.
Schall
,
P.
, and
van Hecke
,
M.
, “
Shear bands in matter with granularity
,”
Annu. Rev. Fluid Mech.
42
(
1
),
67
88
(
2010
).
50.
Schramm
,
L. L.
,
Emulsions, Foams, and Suspensions: Fundamentals and Applications
(
Wiley-VCH
,
2006
).
51.
Stevenson
,
P.
,
Foam Engineering: Fundamentals and Applications
(
John Wiley and Sons
,
2012
).
52.
Tiratsoo
,
J.
, in
Pipeline Pigging and Integrity Technology
, edited by
J.
Tiratsoo
(
Clarion Technical Publishers
,
2003
).
53.
Weaire
,
D.
, “
The rheology of foam
,”
Curr. Opin. Colloid Interface Sci.
13
(
3
),
171
176
(
2008
).
You do not currently have access to this content.