Pair of particle chain self-organization in a square channel flow of Giesekus viscoelastic fluid is studied by the direct forcing/fictitious domain method. The effects of particle diameter, initial particle distance, shear-thinning (n), Weissenberg number (Wi), and Reynolds number (Re) are explored to analyze the mechanism of particle chain self-organization in Giesekus viscoelastic fluid. The results show that the small particle at the equilibrium position moves faster than the larger one and then catches up with it to form a particle chain, in which the large and small particles are located at the front and the end of the chain, respectively. The particle pair with the same diameter cannot form the chain in Giesekus viscoelastic fluid. In addition, the larger the diameter ratio and the initial particle distance, the larger the absolute value of the particle velocity difference, the earlier the particle chain is formed. The particle chain will be formed early with increasing n, Re, and Wi.

1.
T. V.
Nizkaya
,
A. S.
Gekova
,
J.
Harting
,
E. S.
Asmolov
, and
O. I.
Vinogradova
, “
Inertial migration of oblate spheroids in a plane channel
,”
Phys. Fluids
32
,
112017
(
2020
).
2.
X.
Hu
,
P. F.
Lin
,
J. Z.
Lin
,
Z. C.
Zhu
, and
Z. S.
Yu
, “
On the polydisperse particle migration and formation of chains in a square channel flow of non-Newtonian fluids
,”
J. Fluid Mech.
936
,
A5
(
2022
).
3.
M. K.
Raihan
,
D.
Li
,
A. J.
Kummetz
,
L.
Song
,
L. D.
Yu
, and
X. C.
Xuan
, “
Vortex trapping and separation of particles in shear thinning fluids
,”
Appl. Phys. Lett.
116
,
183701
(
2020
).
4.
L. B.
Liu
,
H.
Xu
,
H. B.
Xiu
,
N.
Xiang
, and
Z. H.
Ni
, “
Microfluidic on-demand engineering of longitudinal dynamic self-assembly of particles
,”
Analyst
145
,
5128
(
2020
).
5.
J. F.
Morris
, “
Toward a fluid mechanics of suspensions
,”
Phys. Rev. Fluids
5
,
110519
(
2020
).
6.
J. Z.
Liu
and
Z. H.
Pan
, “
Self-ordering and organization of in-line particle chain in a square microchannel
,”
Phys. Fluids
34
,
023309
(
2022
).
7.
W. J.
Yuan
,
M. Q.
Zhang
,
B. C.
Khoo
, and
N.
Phan-Thien
, “
On a vertical chain of small bubbles ascending in a viscoelastic fluid
,”
Phys. Fluids
33
,
101704
(
2021
).
8.
S.
Kahkeshani
,
H.
Haddadi
, and
D. D.
Carlo
, “
Preferred interparticle spacings in trains of particles in inertial microchannel flows
,”
J. Fluid Mech.
786
,
R3
(
2016
).
9.
M. V.
Majji
and
J. F.
Morris
, “
Inertial migration of particles in Taylor-Couette flows
,”
Phys. Fluids
30
,
033303
(
2018
).
10.
M. V.
Majji
,
S.
Banerjee
, and
J. F.
Morris
, “
Inertial flow transitions of a suspension in Taylor–Couette geometry
,”
J. Fluid Mech.
835
,
936
969
(
2018
).
11.
S. V.
Loon
,
J.
Fransaer
,
C.
Clasen
, and
J.
Vermant
, “
String formation in sheared suspensions in rheologically complex media: The essential role of shear thinning
,”
J. Rheol.
58
,
237
254
(
2014
).
12.
G.
D'Avino
,
F.
Del Greco
, and
P. L.
Maffettone
, “
Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices
,”
Annu. Rev. Fluid Mech.
49
,
341
360
(
2017
).
13.
F.
Del Giudice
,
G.
D'Avino
,
F.
Greco
,
P. L.
Maffettone
, and
A. Q.
Shen
, “
Fluid viscoelasticity drives self-assembly of particle trains in a straight microfluidic channel
,”
Phys. Rev. Appl.
10
,
064058
(
2018
).
14.
X. M.
Shao
,
Z. S.
Yu
, and
B.
Sun
, “
Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers
,”
Phys. Fluids
20
,
103307
(
2008
).
15.
K.
Hood
,
S.
Lee
, and
M.
Roper
, “
Inertial migration of a rigid sphere in three-dimensional Poiseuille flow
,”
J. Fluid Mech.
765
,
452
479
(
2015
).
16.
S.
Nakayama
,
H.
Yamashita
,
T.
Yabu
,
T.
Itano
, and
M.
Sugihara-Seki
, “
Three regimes of inertial focusing for spherical particles suspended in circular tube flows
,”
J. Fluid Mech.
871
,
952
969
(
2019
).
17.
M.
Abbas
,
P.
Magaud
,
Y.
Gao
, and
S.
Geoffroy
, “
Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers
,”
Phys. Fluids
26
,
123301
(
2014
).
18.
K.
Miura
,
T.
Itano
, and
M.
Sugihara-Seki
, “
Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels
,”
J. Fluid Mech.
749
,
320
330
(
2014
).
19.
C.
Liu
,
G. Q.
Hu
,
X. Y.
Jiang
, and
J. S.
Sun
, “
Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers
,”
Lab Chip
15
,
1168
(
2015
).
20.
X.
Hu
,
J. Z.
Lin
,
D. M.
Chen
, and
X. K.
Ku
, “
Influence of non-Newtonian power law rheology on inertial migration of particles in channel flow
,”
Biomicrofluidics
14
,
014105
(
2020
).
21.
A.
Gupta
,
P.
Magaud
,
C.
Lafforgue
, and
M.
Abbas
, “
Conditional stability of particle alignment in finite-Reynolds-number channel flow
,”
Phys. Rev. Fluids
3
,
114302
(
2018
).
22.
X.
Hu
,
J. Z.
Lin
, and
X. K.
Ku
, “
Inertial migration of circular particles in Poiseuille of power-law fluid
,”
Phys. Fluids
31
,
073306
(
2019
).
23.
X.
Hu
,
J. Z.
Lin
,
Y.
Guo
, and
X. K.
Ku
, “
Inertial focusing of elliptical particles and formation of self-organizing trains in a channel flow
,”
Phys. Fluids
33
,
013310
(
2021
).
24.
K. W.
Seo
,
Y. J.
Kang
, and
S. J.
Lee
, “
Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids
,”
Phys. Fluids
26
,
063301
(
2014
).
25.
G. J.
Li
,
G. H.
Mckinley
, and
A. M.
Ardekani
, “
Dynamics of particle migration in channel flow of viscoelastic fluids
,”
J. Fluid Mech.
785
,
486
505
(
2015
).
26.
C.
Liu
,
J. Y.
Guo
,
F.
Tian
,
N.
Yang
,
F. S.
Yan
,
Y. P.
Ding
,
J. Y.
Wei
,
G. Q.
Hu
,
G. J.
Nie
, and
J. S.
Sun
, “
Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows
,”
ACS Nano
11
(
7
),
6968
6976
(
2017
).
27.
Z. S.
Yu
,
P.
Wang
,
J. Z.
Lin
, and
H. H.
Hu
, “
Equilibrium positions of the elasto-inertial particle migration in rectangular channel flow of Oldroyd-B viscoelastic fluids
,”
J. Fluid Mech.
868
,
316
340
(
2019
).
28.
E. J.
Lim
,
T. J.
Ober
,
J. F.
Edd
,
S. P.
Desai
,
D.
Neal
,
K. W.
Bong
,
P. S.
Doyle
,
G. H.
Mckinley
, and
M.
Toner
, “
Inertio-elastic focusing of bioparticles in microchannels at high throughput
,”
Nat. Commun.
5
,
4120
(
2014
).
29.
Y. F.
Gao
,
P.
Magaud
,
C.
Lafforgue
,
S.
Colin
, and
L.
Baldas
, “
Inertial lateral migration and self-assembly of particles in bidisperse suspensions in microchannel flows
,”
Microfluid. Nanofluid.
23
,
93
(
2019
).
30.
J.
Feng
,
P. Y.
Huang
, and
D. D.
Joseph
, “
Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid
,”
J. Non-Newtonian Fluid Mech.
63
,
63
88
(
1996
).
31.
G.
D'Avino
and
P. L.
Maffettone
, “
Numerical simulations on the dynamics of trains of particles in a viscoelastic fluid flowing in a microchannel
,”
Meccanica
55
,
317
330
(
2020
).
32.
H.
Giesekus
, “
Particle movement in flows of non-Newtonian fluids
,”
Z. Angew. Math. Mech.
58
,
T26
T37
(
1978
).
33.
M. K.
Lyon
,
D. W.
Mead
,
R. E.
Elliott
, and
L. G.
Leal
, “
Structure formation in moderately concentrated viscoelastic suspensions in simple shear flow
,”
J. Rheol.
45
,
881
890
(
2001
).
34.
I. S. S. D.
Oliveira
,
W. K. D.
Otter
, and
W. J.
Briels
, “
Alignment and segregation of bidisperse colloids in a shear-thinning viscoelastic fluid under shear flow
,”
Europhys. Lett.
101
,
28002
(
2013
).
35.
Z. S.
Yu
and
X. M.
Shao
, “
A direct-forcing fictitious domain method for particulate flows
,”
J. Comput. Phys.
227
,
292
314
(
2007
).
36.
Y.
Xia
,
H. B.
Xiong
,
Z. S.
Yu
, and
C. L.
Zhu
, “
Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows
,”
Phys. Fluids
32
,
103303
(
2020
).
37.
Z. S.
Yu
,
Y.
Xia
,
Y.
Guo
, and
J. Z.
Lin
, “
Modulation of turbulence intensity by heavy finite-size particles in upward channel flow
,”
J. Fluid Mech.
913
,
A3
(
2021
).
38.
P.
Wang
,
Z. S.
Yu
, and
J. Z.
Lin
, “
Numerical simulations of particle migration in rectangular channel flow of Giesekus viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
262
,
142
148
(
2018
).
39.
H.
Faxén
, “
Der widerstand gegen die bewegung einer starren kugel in einer zähen flüssigkeit, die zwischen zwei parallelen ebenen wänden eingeschlossen ist
,”
Ann. Phys.
373
(
10
),
89
119
(
1922
).
You do not currently have access to this content.