Liquid films created by inclined jet-wall impingement are commonly seen in industrial applications. We investigated the liquid film behaviors created by an inclined jet impinging on a vertical glass wall using a brightness-based laser-induced fluorescence method. It was found that the typical liquid film by an inclined jet-wall impingement consists of the thin layer zone, the raised zone, the liquid node, and the trailing edge. The liquid film expands with higher impingement velocity but keeps the same elliptical shape. A normalized linear correlation is proposed to estimate the liquid film thickness. Based on the continuity equation and the empirical convection model, the Reynolds number distribution is deduced from the film thickness distribution. The Reynolds number in the thin layer zone is less than the critical Reynolds number. The surface waves in the thin layer zone are divided into the ripple waves and the disturbance waves. The disturbance waves have a larger wavelength and amplitude than the ripple waves. The quantitative measurement of the disturbance waves shows that the wavelength and amplitude increase linearly along the radial distance. The smaller impingement velocity does not change the growth rate of the wavelength but accelerates the development of the amplitude.

1.
A. V. S.
Oliveira
,
D.
Maréchal
,
J. L.
Borean
,
V.
Schick
,
J.
Teixeira
,
S.
Denis
, and
M.
Gradeck
, “
Experimental study of the heat transfer of single-jet impingement cooling onto a large heated plate near industrial conditions
,”
Int. J. Heat Mass Transfer
184
,
121998
(
2022
).
2.
T.
Wang
,
J. F.
Davidson
, and
D. I.
Wilson
, “
Flow patterns and cleaning behaviour of horizontal liquid jets impinging on angled walls
,”
Food Bioprod Process
93
,
333
(
2015
).
3.
A. G.
Vorobyev
,
S. S.
Vorobyeva
,
L.
Zhang
, and
E. N.
Beliaev
, “
Thermal state calculation of chamber in small thrust liquid rocket engine for steady state pulsed mode
,”
Chin. J. Aeronaut.
32
,
253
(
2019
).
4.
J. D.
Bills
,
D. S.
Crowe
,
J. L.
Rutledge
, and
E. B.
Coy
, “
Modeling fuel film cooling on a flat plate
,”
J. Thermophys. Heat Transfer
32
,
736
(
2018
).
5.
R.
Miller
and
E.
Coy
, “
Studies in optimizing the film flow rate for liquid fuel film cooling
,” AIAA Paper No. 2011-5779,
2011
.
6.
L.
Tang
,
P.
Li
,
L. X.
Zhou
,
X. W.
Ren
, and
B. T.
Zhang
, “
Theoretical modeling of liquid sheet shape formed by oblique jet impinging onto wall
,”
J. Propul. Technol.
42
,
327
(
2021
).
7.
L.
Tang
,
P.
Li
, and
L. X.
Zhou
, “
Review on liquid film cooling of liquid rocket engine
,”
J. Rocket Propul.
46
,
1
(
2020
).
8.
R. P.
Kate
,
P. K.
Das
, and
S.
Chakraborty
, “
Investigation on non-circular hydraulic jumps formed due to obliquely impinging circular liquid jets
,”
Exp. Therm. Fluid Sci.
32
,
1429
(
2008
).
9.
R. P.
Kate
,
P. K.
Das
, and
S.
Chakraborty
, “
Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface
,”
J. Fluid Mech.
573
,
247
(
2007
).
10.
A.
Kibar
,
H.
Karabay
,
K. S.
Yigit
,
I. O.
Ucar
, and
H. Y.
Erbil
, “
Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces
,”
Exp. Fluids
49
,
1135
(
2010
).
11.
L. J.
Yang
,
P.
Li
, and
Q. F.
Fu
, “
Liquid sheet formed by a Newtonian jet obliquely impinging on pro/hydrophobic surfaces
,”
Int. J. Multiphase Flow
125
,
103192
(
2020
).
12.
P.
Li
,
L. J.
Yang
, and
Q. F.
Fu
, “
Effect of surface contact angle on the wall impingement of a power-law liquid jet
,”
Phys. Fluids
33
,
043105
(
2021
).
13.
E. J.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
(
1964
).
14.
J. W. M.
Bush
and
J. M.
Aristoff
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
(
2003
).
15.
R. K.
Bhagat
,
N. K.
Jha
,
P. F.
Linden
, and
D. I.
Wilson
, “
On the origin of the circular hydraulic jump in a thin liquid film
,”
J. Fluid Mech.
851
,
11
(
2018
).
16.
Y. P.
Wang
and
R. E.
Khayat
, “
The role of gravity in the prediction of the circular hydraulic jump radius for high-viscosity liquids
,”
J. Fluid Mech.
862
,
128
(
2019
).
17.
A.
Duchesne
,
A.
Andersen
, and
T.
Bohr
, “
Surface tension and the origin of the circular hydraulic jump in a thin liquid film
,”
Phys Rev Fluids
4
,
084001
(
2019
).
18.
A.
Duchesne
and
L.
Limat
, “
Circular hydraulic jumps: Where does surface tension matter?
,”
J. Fluid Mech.
937
,
R2
(
2022
).
19.
F. J.
Go
,
D. M.
Yu
,
K.
Furukawa
,
C.
Inoue
,
D.
Shiraiwa
, and
N.
Tanaka
, “
Visualization of coolant liquid film dynamics in hypergolic bipropellant thruster
,”
J. Propul. Power
38
,
267
(
2022
).
20.
T.
Inoue
,
C.
Inoue
,
G.
Fujii
, and
Y.
Daimon
, “
Evaporation of three-dimensional wavy liquid film entrained by turbulent gas flow
,”
AIAA J.
60
,
3805
(
2022
).
21.
A.
Rao
and
J. H.
Arakeri
, “
Wave structure in the radial film flow with a circular hydraulic jump
,”
Exp. Fluids
31
,
542
(
2001
).
22.
M. R.
Cholemari
and
J. H.
Arakeri
, “
Waves on radial film flows
,”
Phys. Fluids
17
,
084108
(
2005
).
23.
T.
Hazuku
,
N.
Fukamachi
,
T.
Takamasa
,
T.
Hibiki
, and
M.
Ishii
, “
Measurement of liquid film in microchannels using a laser focus displacement meter
,”
Exp. Fluids
38
,
780
(
2005
).
24.
A. A.
Mouza
,
N. A.
Vlachos
,
S. V.
Paras
, and
A. J.
Karabelas
, “
Measurement of liquid film thickness using a laser light absorption method
,”
Exp. Fluids
28
,
355
(
2000
).
25.
S.
Chang
,
W.
Yu
,
M.
Song
,
M.
Leng
, and
Q.
Shi
, “
Investigation on wavy characteristics of shear-driven water film using the planar laser induced fluorescence method
,”
Int. J. Multiphase Flow
118
,
242
(
2019
).
26.
T.
Li
,
T.
Lian
,
B.
Huang
,
X.
Yang
,
X.
Liu
, and
Y.
Li
, “
Liquid film thickness measurements on a plate based on brightness curve analysis with acute PLIF method
,”
Int. J. Multiphase Flow
136
,
103549
(
2021
).
27.
D.
Ma
,
S.
Chang
,
K.
Wu
, and
M.
Song
, “
Experimental study on the water film thickness under spray impingement based on planar LIF
,”
Int. J. Multiphase Flow
130
,
103329
(
2020
).
28.
A. V.
Cherdantsev
,
D. B.
Hann
, and
B. J.
Azzopardi
, “
Study of gas-sheared liquid film in horizontal rectangular duct using high-speed LIF technique: Three-dimensional wavy structure and its relation to liquid entrainment
,”
Int. J. Multiphase Flow
67
,
52
(
2014
).
29.
S.
Alekseenko
,
V.
Antipin
,
A.
Cherdantsev
,
S.
Kharlamov
, and
D.
Markovich
, “
Two-wave structure of liquid film and wave interrelation in annular gas–liquid flow with and without entrainment
,”
Phys. Fluids
21
,
061701
(
2009
).
30.
S.
Alekseenko
,
A.
Cherdantsev
,
M.
Cherdantsev
,
S.
Isaenkov
,
S.
Kharlamov
, and
D.
Markovich
, “
Application of a high-speed laser-induced fluorescence technique for studying the three-dimensional structure of annular gas–liquid flow
,”
Exp. Fluids
53
,
77
(
2012
).
31.
C.
Inoue
and
I.
Maeda
, “
On the droplet entrainment from gas-sheared liquid film
,”
Phys. Fluids
33
,
011705
(
2021
).
32.
V. N.
Yarygin
,
V. G.
Prikhodko
,
I. V.
Yarygin
, and
Y. N.
Vyazov
, “
Near-wall liquid film interaction with co-current gas flow inside nozzle and under outflow into vacuum
,”
Vacuum
159
,
494
(
2019
).
33.
Y.
Cheng
,
K.
Deng
, and
T.
Li
, “
The coupling influence of airflow and temperature on the wall-wetted fuel film distribution
,”
Exp. Therm. Fluid Sci.
34
,
227
(
2010
).
34.
F.
Schulz
,
J.
Schmidt
, and
F.
Beyrau
, “
Development of a sensitive experimental setup for LIF fuel wall film measurements in a pressure vessel
,”
Exp. Fluids
56
,
98
(
2015
).
35.
A. V.
Cherdantsev
,
A.
Sinha
, and
D. B.
Hann
, “
Studying the impacts of droplets depositing from the gas core onto a gas-sheared liquid film with stereoscopic BBLIF technique
,”
Int. J. Multiphase Flow
150
,
104033
(
2022
).
36.
L.
Tang
,
J. H.
Hu
, and
J. W.
Liu
, “
Experimental study of oblique jet impinging onto a wall and modeling of geometrical parameters of liquid film
,”
Acta Aeronaut. Astronaut. Sin.
41
,
124061
(
2020
).
37.
R. X.
Wang
,
Y.
Huang
,
X.
Feng
,
L.
Sun
,
D.
Wang
, and
Z. L.
Liu
, “
Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate
,”
Fuel
233
,
84
(
2018
).
38.
L.
Wu
,
C.
Yang
,
F.
Yao
, and
W.
Zhou
, “
Atomization experiment of single free circular jet impinging against wall
,”
J. Rocket Propul.
46
,
44
(
2020
).
39.
J. L.
Li
,
X. Y.
Weng
,
C. L.
Tang
,
Q. H.
Zhang
,
W.
Fan
, and
Z. H.
Huang
, “
The ignition process measurements and performance evaluations for hypergolic ionic liquid fuels: [EMIm] [DCA] and [BMIm] [DCA]
,”
Fuel
215
,
612
(
2018
).
40.
A.
Hoang
,
G.
Berteloot
,
P.
Sharif-Kashani
, and
H. P.
Kavehpour
, “
Dynamic measurement of microfilms and nanofilms of fluids using fluorescence microscopy
,”
Exp. Fluids
52
,
1657
(
2012
).
41.
F. W. D.
Rost
,
Quantitative Fluorescence Microscopy
(
Cambridge University Press
,
Cambridge
,
1991
).
42.
X.
Liu
and
J. H.
Lienhard
, “
The hydraulic jump in circular jet impingement and in other thin liquid films
,”
Exp. Fluids
15
,
108
(
1993
).
43.
T.
Wang
,
D.
Faria
,
L. J.
Stevens
,
J. S. C.
Tan
,
J. F.
Davidson
, and
D. I.
Wilson
, “
Flow patterns and draining films created by horizontal and inclined coherent water jets impinging on vertical walls
,”
Chem. Eng. Sci.
102
,
585
(
2013
).
44.
F. P.
Incropera
,
D. P.
Dewitt
,
T. L.
Bergman
, and
A. S.
Lavine
,
Fundamentals of Heat and Mass Transfer
(
John Wiley & Sons
,
New York
,
2007
).
45.
N. H.
Taylor
,
G. F.
Hewitt
, and
P. M. C.
Lacey
, “
The motion and frequency of large disturbance waves in annular 2-phase flow of air-water mixtures
,”
Chem. Eng. Sci.
18
,
537
(
1963
).
46.
N. S. H.
Taylor
and
N.
Rm
, “
Coalescence of disturbance waves in annular 2 phase flow
,”
Chem. Eng. Sci.
23
,
551
(
1968
).
You do not currently have access to this content.