In hydrophobic surfaces, pressure-driven flows induce electrokinetic flow retardation, where the slip length decreases due to the surface charge. In the current work, we investigate the thermal transport and fluid flow behavior of a pressure-driven flow of shear-thinning fluid with an electroviscous effect, accounting for the influence of surface charge on the slip. The electrical potential field induced in the electrical double layer (EDL), velocity, streaming potential, and temperature is obtained after solving the Poisson–Boltzmann equation, mass, momentum, and energy conservation equations without invoking the Debye–Hückel linearization. Results are presented for a broad range of dimensionless parameters, such as surface charge-independent slip length, Debye–Hückel parameter, zeta potential, heat flux, and flow consistency index (n). The flow velocity decreases after considering the effect of surface charge on slip, and such decrement is more for lower value of n, higher magnitude of zeta potential, and thicker EDL. Moreover, for lower value of n (1/3), the alteration of the Nusselt number with the surface charge is non-monotonic, whereas it increases with the surface charge magnitude for higher value of n (1/2). Further, for lower value of n, the Nusselt number enhances by the surface charge effect on the slip, whereas, for higher value of n, the trend is the opposite. Also, there is a strong interplay of the rheology of the fluid and EDL thickness in dictating the variation of the Nusselt number.

1.
R. P.
Bharti
,
D. J.
Harvie
, and
M. R.
Davidson
, “
Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel
,”
Int. J. Heat Fluid Flow
30
(
4
),
804
811
(
2009
).
2.
D.
Jing
and
B.
Bhushan
, “
The coupling of surface charge and boundary slip at the solid–liquid interface and their combined effect on fluid drag: A review
,”
J. Colloid Interface Sci.
454
,
152
179
(
2015
).
3.
A. H.
Sarabandi
and
A. J.
Moghadam
, “
Thermal analysis of power-law fluid flow in a circular microchannel
,”
ASME J. Heat Transfer
139
(
3
),
032401
(
2017
).
4.
G. H.
Tang
,
P. X.
Ye
, and
W. Q.
Tao
, “
Electroviscous effect on non-Newtonian fluid flow in microchannels
,”
J. Non-Newtonian Fluid Mech.
165
(
7–8
),
435
440
(
2010
).
5.
R. J.
Hunter
,
Zeta Potential in Colloid Science, Principles and Applications
(
Academic Press
,
1981
).
6.
J.
Lyklema
,
Fundamentals of Interfaces and Colloid Science
(
Academic Press
,
1995
), Vol.
II
.
7.
D.
Li
,
Electrokinetics in Microfluidics
(
Elsevier
,
2004
).
8.
X.
Xuan
, “
Streaming potential and electroviscous effect in heterogeneous microchannels
,”
Microfluid. Nanofluid.
4
(
5
),
457
462
(
2008
).
9.
L.
Ren
,
D.
Li
, and
W.
Qu
, “
Electro-viscous effects on liquid flow in microchannels
,”
J. Colloid Interface Sci.
233
(
1
),
12
22
(
2001
).
10.
A.
Riad
,
B.
Khorshidi
, and
M.
Sadrzadeh
, “
Analysis of streaming potential flow and electroviscous effect in a shear-driven charged slit microchannel
,”
Sci. Rep.
10
,
18317
(
2020
).
11.
X.
Chen
,
Y.
Jian
, and
Z.
Xie
, “
Electrokinetic flow of fluids with pressure-dependent viscosity in a nanotube
,”
Phys. Fluids
33
,
122002
(
2021
).
12.
M.
Sadeghi
,
M. H.
Saidi
,
M.
Kröger
, and
M.
Tagliazucchi
, “
Stimuli-responsive polyelectrolyte brushes for regulating streaming current magnetic field and energy conversion efficiency in soft nanopores
,”
Phys. Fluids
34
,
082022
(
2022
).
13.
Y.
Pan
,
B.
Bhushan
, and
X.
Zhao
, “
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review
,”
Beilstein J. Nanotechnol.
5
(
1
),
1042
1065
(
2014
).
14.
D.
Jing
and
B.
Bhushan
, “
Electroviscous effect on fluid drag in a microchannel with large zeta potential
,”
Beilstein J. Nanotechnol.
6
(
1
),
2207
2216
(
2015
).
15.
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
, “
Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics
,”
J. Chem. Phys.
125
(
20
),
204716
(
2006
).
16.
D.
Jing
and
B.
Bhushan
, “
Quantification of surface charge density and its effect on boundary slip
,”
Langmuir
29
(
23
),
6953
6963
(
2013
).
17.
D.
Jing
and
B.
Bhushan
, “
Effect of boundary slip and surface charge on the pressure-driven flow
,”
J. Colloid Interface Sci.
392
,
15
26
(
2013
).
18.
M.
Buren
,
Y.
Jian
,
Y.
Zhao
,
L.
Chang
, and
Q.
Liu
, “
Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube
,”
Beilstein J. Nanotechnol.
10
(
1
),
1628
1635
(
2019
).
19.
M.
Buren
,
Y.
Jian
,
Y.
Zhao
, and
L.
Chang
, “
Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip
,”
J. Phys. D: Appl. Phys.
51
(
20
),
205601
(
2018
).
20.
Y.
Li
and
B.
Bhushan
, “
The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids
,”
Soft Matter
11
(
38
),
7680
7695
(
2015
).
21.
T.
Sen
and
M.
Barisik
, “
Slip effects on ionic current of viscoelectric electroviscous flows through different length nanofluidic channels
,”
Langmuir
36
(
31
),
9191
9203
(
2020
).
22.
C. H.
Chen
, “
Fully-developed thermal transport in combined electroosmotic and pressure driven flow of power-law fluids in microchannels
,”
Int. J. Heat Mass Transfer
55
(
7–8
),
2173
2183
(
2012
).
23.
G. H.
Tang
, “
Non-Newtonian flow in microporous structures under the electroviscous effect
,”
J. Non-Newtonian Fluid Mech.
166
(
14–15
),
875
881
(
2011
).
24.
N.
Vasu
and
S.
De
, “
Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel
,”
Int. J. Eng. Sci.
48
(
11
),
1641
1658
(
2010
).
25.
X.
Zhang
,
S.
Kuang
,
Y.
Shi
,
X.
Wang
,
W.
Zhu
,
Q.
Cai
,
Y.
Wang
, and
J.
Deng
, “
A new liquid transport model considering complex influencing factors for nano-to micro-sized circular tubes and porous media
,”
Phys. Fluids
31
,
112006
(
2019
).
26.
X.
Zhang
,
Y.
Shi
,
S.
Kuang
,
W.
Zhu
,
Q.
Cai
,
Y.
Wang
,
X.
Wu
, and
T.
Jin
, “
Microscale effects of Bingham-plastic liquid behavior considering electroviscous effects in nano-or microsized circular tubes
,”
Phys. Fluids
31
,
022001
(
2019
).
27.
K.
Naga Vasista
,
S. K.
Mehta
,
S.
Pati
, and
S.
Sarkar
, “
Electroosmotic flow of viscoelastic fluid through a microchannel with slip-dependent zeta potential
,”
Phys. Fluids
33
,
123110
(
2021
).
28.
D.
Banerjee
,
S. K.
Mehta
,
S.
Pati
, and
P.
Biswas
, “
Analytical solution to heat transfer for mixed electroosmotic and pressure-driven flow through a microchannel with slip-dependent zeta potential
,”
Int. J. Heat Mass Transfer
181
,
121989
(
2021
).
29.
D.
Banerjee
,
S.
Pati
, and
P.
Biswas
, “
Analytical study of two-layered mixed electro-osmotic and pressure-driven flow and heat transfer in a microchannel with hydrodynamic slippage and asymmetric wall heating
,”
Phys. Fluids
34
(
3
),
032013
(
2022
).
30.
D.
Jing
and
Y.
Pan
, “
Electroviscous effect and convective heat transfer of pressure-driven flow through microtubes with surface charge-dependent slip
,”
Int. J. Heat Mass Transfer
101
,
648
655
(
2016
).
31.
D.
Jing
,
Y.
Pan
, and
X.
Wang
, “
Joule heating, viscous dissipation and convective heat transfer of pressure-driven flow in a microchannel with surface charge-dependent slip
,”
Int. J. Heat Mass Transfer
108
,
1305
1313
(
2017
).
32.
R.
Dey
,
J.
Chakraborty
, and
S.
Chakraborty
, “
Heat transfer characteristics of non-Newtonian fluid flows in narrow confinements considering the effects of streaming potential
,”
Int. J. Micro-Nano Scale Transp.
2
,
259
268
(
2011
).
33.
S.
Pati
,
S. K.
Som
, and
S.
Chakraborty
, “
Combined influences of electrostatic component of disjoining pressure and interfacial slip on thin film evaporation in nanopores
,”
Int. J. Heat Mass Transfer
64
,
304
312
(
2013
).
34.
Z.
Cheng
,
Z.
Ning
,
W.
Zhang
, and
S.
Ke
, “
Theoretical investigation of electroviscous flows in hydrophilic slit nanopores: Effects of ion concentration and pore size
,”
Phys. Fluids
32
(
2
),
022005
(
2020
).
35.
L.
Gong
,
J.
Wu
,
L.
Wang
, and
K.
Cao
, “
Streaming potential and electroviscous effects in periodical pressure-driven microchannel flow
,”
Phys. Fluids
20
(
6
),
063603
(
2008
).
36.
S.
Pabi
,
S. K.
Mehta
, and
S.
Pati
, “
Analysis of thermal transport and entropy generation characteristics for electroosmotic flow through a hydrophobic microchannel considering viscoelectric effect
,”
Int. Commun. Heat Mass Transfer
127
,
105519
(
2021
).
37.
A.
Sadeghi
,
M.
Fattahi
, and
M. H.
Saidi
, “
An approximate analytical solution for electro-osmotic flow of power-law fluids in a planar microchannel
,”
ASME J. Heat Transfer
133
(
9
),
091701
(
2011
).
38.
C. H.
Choi
,
U.
Ulmanella
,
J.
Kim
,
C. M.
Ho
, and
C. J.
Kim
, “
Effective slip and friction reduction in nanograted superhydrophobic microchannels
,”
Phys. Fluids
18
(
8
),
087105
(
2006
).
39.
R.
Sarma
,
H.
Gaikwad
, and
P. K.
Mondal
, “
Effect of conjugate heat transfer on entropy generation in slip-driven microflow of power law fluids
,”
Nanoscale Microscale Thermophys. Eng.
21
(
1
),
26
44
(
2017
).
40.
S. A.
Sajadifar
,
A.
Karimipour
, and
D.
Toghraie
, “
Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions
,”
Eur. J. Mech. B
61
,
25
32
(
2017
).
41.
S.
Prakash
,
R.
Mishra
,
R.
Malviya
, and
P. K.
Sharma
, “
Measurement techniques and pharmaceutical applications of zeta potential: A review
,”
J. Chronother. Drug Delivery
5
(
2
),
33
40
(
2014
).
42.
F.
Shaikh
,
S. F.
Shah
,
A. M.
Siddiqui
, and
L.
Kumar
, “
Application of recursive approach of pseudoplastic fluid flow between rotating coaxial cylinders
,”
Alex. Eng. J.
61
(
10
),
7823
7832
(
2022
).
43.
B. J.
Kirby
and
E. F.
Hasselbrink
, Jr.
, “
Zeta potential of microfluidic substrates. I. Theory, experimental techniques, and effects on separations
,”
Electrophoresis
25
(
2
),
187
202
(
2004
).
44.
K. V.
Reddy
,
O. D.
Makinde
, and
M. G.
Reddy
, “
Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric micro-channel
,”
Indian J. Phys.
92
(
11
),
1439
1448
(
2018
).
45.
S. S.
Bhosale
and
A. R.
Acharya
, “
Review on applications of micro channel heat exchanger
,”
Int. Res. J. Eng. Technol.
7
(
4
),
5326
(
2020
).
46.
A. J.
Nath
,
P.
Roy
,
D.
Banerjee
,
S.
Pati
,
P. R.
Randive
, and
P.
Biswas
, “
Analytical solution to time periodic electroosmotic flow of generalized Maxwell fluids in parallel plate microchannel with slip-dependent zeta potential
,”
J. Fluids Eng.
145
,
014501
(
2023
).
47.
C.
Zhao
,
E.
Zholkovskij
,
J. H.
Masliyah
, and
C.
Yang
, “
Analysis of electroosmotic flow of power-law fluids in a slit microchannel
,”
J. Colloid Interface Sci.
326
(
2
),
503
510
(
2008
).
48.
C. Y.
Soong
,
P. W.
Hwang
, and
J. C.
Wang
, “
Analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with slip-dependent zeta potential
,”
Microfluid. Nanofluid.
9
(
2–3
),
211
223
(
2010
).
49.
Y.
Zhu
and
S.
Granick
, “
Rate-dependent slip of Newtonian liquid at smooth surfaces
,”
Phys. Rev. Lett.
87
(
9
),
096105
(
2001
).
50.
S.
Berg
,
A. W.
Cense
,
J. P.
Hofman
, and
R. M. M.
Smits
, “
Flow in porous media with slip boundary condition
,” paper presented at the
International Symposium of the Society of Core Analysts
,
Calgary
,
Canada
(
2007
).
51.
P.
Kaushik
,
S.
Pati
,
S. K.
Som
, and
S.
Chakraborty
, “
Hydrodynamic swirl decay in microtubes with interfacial slip
,”
Nanoscale Microscale Thermophys. Eng.
16
(
2
),
133
143
(
2012
).
52.
S. K.
Mitra
and
S.
Chakraborty
,
Microfluidics and Nanofluidics Handbook: Chemistry, Physics, and Life Science Principles
(
CRC Press
,
2011
).
53.
R. S.
Kapadia
and
P. R.
Bandaru
, “
Heat flux concentration through polymeric thermal lenses
,”
Appl. Phys. Lett.
105
(
23
),
233903
(
2014
).
54.
Encyclopedia of Microfluidics and Nanofluidics
, edited by
D.
Li
(
Springer Science & Business Media
,
2008
).
You do not currently have access to this content.