The use of three-dimensional (3D) printing for fabrication of master molds for microfluidic devices is very attractive due to its availability and simplicity and replaces the standard methods of soft lithography. However, the commercially available photopolymer resins inhibit the curing of polydimethylsiloxane (PDMS), preventing reliable replication of 3D printed master mold structures. Here, we present a simple and safe method to post-process 3D printed photopolymer master molds for PDMS microfluidic devices. This approach expands the possibilities of prototyping microfluidic PDMS devices for a wider research community without complex post-processing tools currently required for fabrication of 3D photopolymer master molds.

1.
D. I.
Walsh
 III
,
D. S.
Kong
,
S. K.
Murthy
, and
P. A.
Carr
, “
Enabling microfluidics: From clean rooms to makerspaces
,”
Trends Biotechnol.
35
(
5
),
383
392
(
2017
).
2.
S. M.
Scott
and
Z.
Ali
, “
Fabrication methods for microfluidic devices: An overview
,”
Micromachines
12
(
3
),
319
(
2021
).
3.
N.
Convery
and
N.
Gadegaard
, “
30 Years of microfluidics
,”
Micro Nano Eng.
2
,
76
91
(
2019
).
4.
J. C.
McDonald
,
D. C.
Duffy
,
J. R.
Anderson
,
D. T.
Chiu
,
H.
Wu
,
O. J. A.
Schueller
, and
G. M.
Whitesides
, “
Fabrication of microfluidic systems in poly(dimethylsiloxane)
,”
Electrophoresis
21
,
27
40
(
2000
).
5.
B. K.
Gale
,
A. R.
Jafek
,
C. J.
Lambert
,
B. L.
Goenner
,
H.
Moghimifam
,
U. C.
Nze
, and
S. K.
Kamarapu
, “
A review of current methods in microfluidic device fabrication and future commercialization prospects
,”
Inventions
3
(
3
),
60
(
2018
).
6.
M. K.
Ng Jessamine
,
I.
Gitlin
,
A. D.
Stroock
, and
G. M.
Whitesides
, “
Components for integrated poly(dimethylsiloxane) microfluidic systems
,”
Electrophoresis
23
(
20
),
3461
3473
(
2002
).
7.
P. K.
Yuen
,
H.
Su
,
V. N.
Goral
, and
K. A.
Fink
, “
Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices
,”
Lab Chip
11
(
8
),
1541
1544
(
2011
).
8.
G. M.
Whitesides
,
E. S.
Ostuni
,
S.
Takayama
,
X.
Jiang
, and
D. E.
Ingber
, “
Soft lithography in biology and biochemistry
,”
Annu. Rev. Biomed. Eng.
3
,
335
373
(
2001
).
9.
D. B.
Wolfe
,
D.
Qin
, and
G. M.
Whitesides
, “
Rapid prototyping of microstructures by soft lithography for biotechnology
,” in
Microengineering in Biotechnology
(
Springer
,
2009
), pp.
81
107
.
10.
B.
Venzac
,
S.
Deng
,
Z.
Mahmoud
,
A.
Lenferink
,
A.
Costa
,
F.
Bray
,
C.
Otto
,
C.
Rolando
, and
S. L.
Gac
, “
PDMS curing inhibition on 3D-printed molds: Why? Also, how to avoid it?
Anal. Chem.
93
(
19
),
7180
7187
(
2021
).
11.
G.
Comina
,
A.
Suska
, and
D.
Filippini
, “
PDMS lab-on-a-chip fabrication using 3D printed templates
,”
Lab Chip
14
,
424
430
(
2014
).
12.
S.
Waheed
,
J. M.
Cabot
,
N. P.
Macdonald
,
T.
Lewis
,
R. M.
Guijt
,
B.
Paull
, and
M. C.
Breadmore
, “
3D printed microfluidic devices: Enablers and barriers
,”
Lab Chip
16
,
1993
2013
(
2016
).
13.
P. J.
Kitson
,
M. H.
Rosnes
,
V.
Sans
,
V.
Dragone
, and
L.
Cronin
, “
Configurable 3D-printed millifluidic and microfluidic ‘Lab on a chip’ reactionware devices
,”
Lab Chip
12
,
3267
3271
(
2012
).
14.
M. D.
Symes
,
P. J.
Kitson
,
J.
Yan
,
C. J.
Richmond
,
G. J. T.
Cooper
,
R. W.
Bowman
,
T.
Vilbrandt
, and
L.
Cronin
, “
Integrated 3D-printed reactionware for chemical synthesis and analysis
,”
Nat. Chem.
4
,
349
354
(
2012
).
15.
M.
Garcia-Cardosa
,
F.-J.
Granados-Ortiz
, and
J.
Ortega-Casanova
, “
A review on additive manufacturing of micromixing devices
,”
Micromachines
13
(
1
),
73
(
2022
).
16.
T.
Monaghan
,
M. J.
Harding
,
R. A.
Harris
,
R. J.
Friela
, and
S. D. R.
Christie
, “
Customisable 3D printed microfluidics for integrated analysis and optimization
,”
Lab Chip
16
,
3362
3373
(
2016
).
17.
J. P.
Sibbitt
and
M.
He
, “
3D printing of microfluidics for point of care diagnosis
,” in
International Manufacturing Science and Engineering Conference
(
American Society of Mechanical Engineers
,
2017
), p.
2778
.
18.
H. N.
Chan
,
Y.
Chen
,
Y.
Shu
,
Y.
Chen
,
Q.
Tian
, and
H.
Wu
, “
Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips
,”
Microfluid. Nanofluid.
19
(
1
),
9
18
(
2015
).
19.
K. B.
Anderson
,
S. Y.
Lockwood
,
R. S.
Martin
, and
D. M.
Spence
, “
A 3D printed fluidic device that enables integrated features
,”
Anal. Chem.
85
(
12
),
5622
5626
(
2013
).
20.
M.
de Almeida Monteiro Melo Ferraz
,
J. B.
Nagashima
,
B.
Venzac
,
S.
Le Gac
, and
N.
Songsasen
, “
3D printed mold leachates in PDMS microfluidic devices
,”
Sci. Rep.
10
,
994
(
2020
).
21.
C.
Chande
,
N.
Riaz
,
V.
Harbour
,
H.
Noor
,
M.
Torralba
,
Y. H.
Cheng
,
Z.
Li
,
A.
Tong
,
R.
Voronov
, and
S.
Basuray
, “
Universal method for fabricating PDMS microfluidic device using SU8, 3D printing and soft lithography
,”
Technology
8
,
50
57
(
2020
).
22.
S. R.
Bazaz
,
N.
Kashaninejad
,
S.
Azadi
,
K.
Patel
,
M.
Asadnia
,
D.
Jin
, and
M. E.
Warkiani
, “
Microfluidics: Rapid softlithography using 3D-printed molds
,”
Adv. Mater. Technol.
4
(
10
),
1900425
(
2019
).
23.
See www.cadworks3d.com and https://cadworks3d.com/product/master-mold-resin/ for more information about resin for microfluidics (last accessed May 1,
2022
).
24.
Z.
Zhu
,
Y.
Geng
,
Z.
Yuan
,
S.
Ren
,
M.
Liu
,
Z.
Meng
, and
D.
Pan
, “
A bubble-free microfluidic device for easy-to-operate immobilization
,”
Micromachines
10
(
3
),
168
(
2019
).
25.
M.
Lessel
,
O.
Bäumchen
,
M.
Klos
,
H.
Hähl
,
R.
Fetzer
,
M.
Paulus
,
R.
Seemann
, and
K.
Jacobs
, “
Self-assembled silane monolayers: An efficient step-by-step recipe for high-quality, low energy surfaces
,”
Surf. Interface Anal.
47
(
5
),
557
564
(
2015
).
26.
See https://pubchem.ncbi.nlm.nih.gov/source/11945/ for “National Library of Medicine” (last accessed May 1,
2022
).
27.
E.
Dhanumalayan
and
G. M.
Joshi
, “
Performance properties and applications of polytetrafluoroethylene (PTFE)—A review
,”
Adv. Compos. Hybrid Mater.
1
,
247
268
(
2018
).
28.
J.
Yao
,
Y.
Guan
,
Y.
Park
,
Y. E.
Choi
,
H. S.
Kim
, and
J.
Park
, “
Optimization of PTFE coating on PDMS surfaces for inhibition of hydrophobic molecule absorption for increased optical detection sensitivity
,”
Sensors
21
,
1754
(
2021
).
29.
C. A.
Mertdogan
,
H.-S.
Byun
,
M. A.
McHugh
, and
W. H.
Tuminello
, “
Solubility of poly(tetrafluoroethylene-co-19 mol % hexafluoropropylene) in supercritical CO2 and halogenated supercritical solvents
,”
Macromolecules
29
(
20
),
6548
6555
(
1996
).
30.
See https://www.3m.com for “Minnesota Mining and Manufacturing Company.”
31.
E. A. D.
Carbone
,
M. W. G. M.
Verhoeven
,
W.
Keuning
, and
J. J. A. M.
van der Mullen
, “
PTFE treatment by remote atmospheric Ar/O2 plasmas: A simple reaction scheme model proposal
,”
J. Phys.
715
,
012011
(
2016
).
32.
Y.
Ohkubo
,
Y.
Okazaki
,
M.
Shibahara
,
M.
Nishino
,
Y.
Seto
,
K.
Endo
, and
K.
Yamamura
, “
Effects of He and Ar heat-assisted plasma treatments on the adhesion properties of polytetrafluoroethylene (PTFE)
,”
Polymers
13
,
4266
(
2021
).
33.
J.
Hubert
,
T.
Dufour
,
N.
Vandencasteele
,
S.
Desbief
,
R.
Lazzaroni
, and
F.
Reniers
, “
Etching processes of polytetrafluoroethylene surfaces exposed to He and He–O2 atmospheric post-discharges
,”
Langmuir
28
,
9466
9474
(
2012
).
34.
T.
Dufour
,
J.
Hubert
,
N.
Vandencasteele
,
P.
Viville
,
R.
Lazzaroni
, and
F.
Reniers
, “
Competitive and synergistic effects between excimer VUV radiation and O radicals on the etching mechanisms of polyethylene and fluoropolymer surfaces treated by an atmospheric He–O2 post-discharge
,”
J. Phys. D
46
,
315203
(
2013
).
35.
See https://www.formoplast-spb.ru for information about seller PTFE.
You do not currently have access to this content.