A single-winged maple seed (samara) is dispersed laterally by a crosswind in contrast to simply descending straight down (zero dispersion) in quiescent air. This article presents the general kinematic response of a particular type of samaras (Acer buergerianum) in stable autorotation to the disturbance of a concentrated crosswind (simulated via slot jet) with the crosswind strength varied distinctively from weak to strong. A relatively weak crosswind slower than the tip velocity of the stably autorotating samara causes only damped undulations of its descent trajectory. In contrast, we demonstrate that the samara exhibits a bi-modal response when disturbed by a relatively strong crosswind (velocity greater than samara tip velocity). The strong crosswind enables the samara either to float laterally with the crosswind or drop-out through the crosswind with the switching of its rotational direction. Regardless of crosswind strength, stable autorotation is re-established after the samara leaves the crosswind zone, albeit accompanied by large-scale undulations in its descent trajectory. More importantly, before landing, the samara regains its original terminal descent velocity achieved in quiescent air.

1.
E. J.
Lee
and
S. J.
Lee
, “
Effect of initial attitude on autorotation flight of maple samaras (Acer palmatum)
,”
J. Mech. Sci. Technol.
30
,
741
(
2016
).
2.
P.
Niu
,
M. D.
Atkins
,
Y.
Liu
,
M.
Li
,
T. J.
Lu
, and
T.
Kim
, “
Intrinsic equilibrium of stably autorotating samaras
,”
Phys. Rev. E
106
,
014405
(
2022
).
3.
S. K. H.
Win
,
C. H.
Tan
,
D. S. B.
Shaiful
,
J. E.
Low
,
G. S.
Soh
, and
S.
Foong
, “
The effects of chordwise wing optimization of single-winged samara in autorotation
,” in
IEEE International Conference on Advanced Intelligent Mechatronics
(
IEEE
,
Munich
,
2017
), pp.
815
820
.
4.
K.
Fregene
and
C. L.
Bolden
, “
Dynamics and control of a biomimetic single-wing nano air vehicle
,” in
Proceedings of the 2010 American Control Conference
(IEEE,
Baltimore
,
2010
), pp.
51
56
.
5.
E. R.
Ulrich
,
D. J.
Pines
, and
J. S.
Humbert
, “
From falling to flying: The path to powered flight of a robotic samara nano air vehicle
,”
Bioinspiration Biomimetics
5
,
045009
(
2010
).
6.
S.
Thomas
,
D.
Ho
,
A.
Kerroux
,
L.
Lixi
,
N.
Rackham
, and
S.
Rosenfeld
, “
Concept and design of a biomimetic single-wing MAV
,”
Int. J. Eng.
2
,
16
(
2014
).
7.
S. K. H.
Win
,
L. S. T.
Win
,
D.
Sufiyan
,
G. S.
Soh
, and
S.
Foong
, “
Dynamics and control of a collaborative and separating descent of samara autorotating wings
,”
IEEE Rob. Autom. Lett.
4
,
3067
(
2019
).
8.
B. H.
Kim
 et al, “
Three-dimensional electronic microfliers inspired by wind-dispersed seeds
,”
Nature
597
,
503
(
2021
).
9.
P.
Pounds
and
S.
Singh
, “
Samara: Biologically inspired self-deploying sensor networks
,”
IEEE Potentials
34
,
10
(
2015
).
10.
G. K.
Nave
,
N.
Hall
,
K.
Somers
,
B.
Davis
,
H.
Gruszewski
,
C.
Powers
, and
S. D.
Ross
, “
Wind dispersal of natural and biomimetic maple samaras
,”
Biomimetics
6
,
23
(
2021
).
11.
D. S.
Green
, “
The terminal velocity and dispersal of spinning samaras
,”
Am. J. Bot.
67
,
1218
(
1980
).
12.
C. K.
Augspurger
, “
Morphology and dispersal potential of wind-dispersed diaspores of neotropical trees
,”
Am. J. Bot.
73
,
353
(
1986
).
13.
D. F.
Greene
and
E. A.
Johnson
, “
The aerodynamics of plumed seeds
,”
Funct. Ecol.
4
,
117
(
1990
).
14.
D. F.
Greene
and
E. A.
Johnson
, “
Can the variation in samara mass and terminal velocity on an individual plant affect the distribution of dispersal distances?
Am. Nat.
139
,
825
(
1992
).
15.
D. F.
Greene
and
E. A.
Johnson
, “
Seed mass and dispersal capacity in wind-dispersed diaspores
,”
Oikos
67
,
69
(
1993
).
16.
D.
Lentink
,
W. B.
Dickson
,
J. L.
Van Leeuwen
, and
M. H.
Dickinson
, “
Leading-edge vortices elevate lift of autorotating plant seeds
,”
Science
324
,
1438
(
2009
).
17.
E.
Salcedo
,
C.
Treviño
,
R. O.
Vargas
, and
L.
Martínez-Suástegui
, “
Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla)
,”
J. Exp. Biol.
216
,
2017
(
2013
).
18.
S. J.
Lee
,
E. J.
Lee
, and
M. H.
Sohn
, “
Mechanism of autorotation flight of maple samaras (Acer palmatum)
,”
Exp. Fluids
55
,
1718
(
2014
).
19.
E.
Limacher
and
D. E.
Rival
, “
On the distribution of leading-edge vortex circulation in samara-like flight
,”
J. Fluid Mech.
776
,
316
333
(
2015
).
20.
A. M.
El Makdah
,
L.
Sanders
,
K.
Zhang
, and
D. E.
Rival
, “
The stability of leading-edge vortices to perturbations on samara-inspired rotors: A novel solution for gust resistance
,”
Bioinspiration Biomimetics
15
,
016006
(
2019
).
21.
L.
Chen
,
C.
Zhou
, and
J.
Wu
, “
The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low Reynolds number
,”
Phys. Fluids
32
,
011906
(
2020
).
22.
X.
Cheng
and
M.
Sun
, “
Wing kinematics and aerodynamic forces in miniature insect Encarsia formosa in forward flight
,”
Phys. Fluids
33
,
021905
(
2021
).
23.
J. D.
Zhang
and
W. X.
Huang
, “
On the role of vortical structures in aerodynamic performance of a hovering mosquito
,”
Phys. Fluids
31
,
051906
(
2019
).
24.
J.
Alam
, “
Interaction of vortex stretching with wind power fluctuations
,”
Phys. Fluids
34
,
075132
(
2022
).
25.
S. G.
Perry
and
W. H.
Snyder
, “
Laboratory simulations of the atmospheric mixed-layer in flow over complex topography
,”
Phys. Fluids
29
,
020702
(
2017
).
26.
C.
Wu
,
H. Y.
Du
,
W. H.
Xu
,
P. P.
Hang
, and
D. L.
Li
, “
The biological characteristics and planting technology of Acer buergerianum
,”
Chin. Wild Plant Resour.
26
,
68
69
(
2007
).
27.
M.
Bervida
,
S.
Stanič
,
K.
Bergant
, and
B.
Strajnar
, “
Near-ground profile of bora wind speed at Razdrto, Slovenia
,”
Atmosphere
10
,
601
(
2019
).
28.
R. L.
Hughes
, “
A mathematical determination of von Karman's constant
,”
J. Hydraul. Res.
45
,
563
566
(
2007
).
29.
S.
Ichikawa
,
S.
Saitou
,
K.
Kawase
,
M.
Mimura
, and
T.
Sugimoto
, “
Samaras fly in the transverse wind
,”
Theor. Appl. Mech.
56
,
189
194
(
2008
).
30.
R.
Nathan
,
G. G.
Katul
,
H. S.
Horn
,
S. M.
Thomas
,
R.
Oren
,
R.
Avissar
,
S. W.
Pacala
, and
S. A.
Levin
, “
Mechanisms of long-distance dispersal of seeds by wind
,”
Nature
418
,
409
(
2002
).
31.
B.-S.
Shiaua
and
Y.-B.
Chena
, “
Observation on wind turbulence characteristics and velocity spectra near the ground at the coastal region
,”
J. Wind. Eng. Ind. Aerodyn.
90
,
1671
1681
(
2002
).
32.
D. C.
Collis
and
M. J.
Williams
, “
Two-dimensional convection from heated wires at low Reynolds numbers
,”
J. Fluid Mech.
6
,
357
(
1959
).
33.
M. Y.
Zakaria
,
C. R.
dos Santos
,
A.
Dayhoum
,
F. D.
Marques
, and
M. R.
Hajj
, “
Modeling and prediction of aerodynamic characteristics of free fall rotating wing based on experiments
,” in
IOP Conference Series: Materials Science and Engineering
(
IOP Publishing
,
Cairo
,
2019
).
34.
M. H.
Sohn
,
H. S.
Yoo
, and
J. G.
Kwak
, “
Numerical simulations of the autorotative flight of the real and artificial maple seeds
,” in
15th International Conference on Fluid Control, Measurements and Visualization
(MDPI,
Naples
,
2019
), pp.
1
17
.
You do not currently have access to this content.