Increasingly heart failure patients need to use Ventricular Assist Devices (VADs) to keep themselves alive. During treatment, hemolysis is an inevitable complication of interventional devices. The most common method for evaluating mechanical hemolysis is to calculate Hemolysis Index (HI) by the power-law formula. However, the HI formula still has obvious flaws. With an intention of further understanding the phenomenon of mechanical hemolysis in non-physiological flow, our study developed a coarse-grained erythrocyte destruction model at the cellular scale and explored the mechanism of the single erythrocyte shear destruction utilizing the Dissipative Particle Dynamics, including the erythrocyte stretching destruction process and the erythrocyte non-physiological shearing destruction process. In the process of stretching and shearing, the high-strain distribution areas of erythrocytes are entirely different. The high-strain areas during stretching are concentrated on the central axis. After the stretch failure, the erythrocyte changes from fusiform to shriveled biconcave. In the shear breaking process, the high strain areas are focused on the erythrocyte edge, causing the red blood cells to evolve from an ellipsoid shape to a plate shape. In addition to the flow shear stress, the shear rate acceleration is also an important factor in the erythrocyte shear damage. The erythrocyte placed in low shear stress flow is still unstably destroyed under high shear rate acceleration. Consequently, the inclusion of flow-buffering structures in the design of VADs may improve non-physiological hemolysis.

1.
M.
Pahuja
,
J.
Hernandez-Montfort
,
E. H.
Whitehead
,
M.
Kawabori
, and
N. K.
Kapur
, “
Device profile of the Impella 5.0 and 5.5 system for mechanical circulatory support for patients with cardiogenic shock: Overview of its safety and efficacy
,”
Expert Rev. Med. Devices
19
(
1
),
1
10
(
2021
).
2.
H. H.
Chera
,
M.
Nagar
,
N.-L.
Chang
,
C.
Morales-Mangual
,
G.
Dous
,
J. D.
Marmur
,
M.
Ihsan
,
P.
Madaj
, and
Y.
Rosen
, “
Overview of Impella and mechanical devices in cardiogenic shock
,”
Expert Rev. Med. Devices
15
(
4
),
293
299
(
2018
).
3.
A. L.
Throckmorton
,
J. Y.
Kapadia
,
S. G.
Chopski
,
S. S.
Bhavsar
,
W. B.
Moskowitz
,
S. D.
Gullquist
,
J. J.
Gangemi
,
C. M.
Haggerty
, and
A. P.
Yoganathan
, “
Numerical, hydraulic, and hemolytic evaluation of an intravascular axial flow blood pump to mechanically support Fontan patients
,”
Ann. Biomed. Eng.
39
(
1
),
324
336
(
2011
).
4.
D. N.
Ku
, “
Blood flow in arteries
,”
Annu. Rev. Fluid Mech.
29
(
1
),
399
434
(
1997
).
5.
M.
Anand
and
K. R.
Rajagopal
, “
A mathematical model to describe the change in the constitutive character of blood due to platelet activation
,”
C. R. Mec.
330
(
8
),
557
562
(
2002
).
6.
J.
Du
,
E.
Aspray
, and
A.
Fogelson
, “
Computational investigation of platelet thrombus mechanics and stability in stenotic channels
,”
J. Biomech.
122
,
110398
(
2021
).
7.
S.
Wakasa
,
T.
Yagi
,
Y.
Akimoto
,
N.
Tokunaga
,
K.
Iwasaki
, and
M.
Umezu
, in
IFMBE Proceedings
(
Springer
,
Berlin/Heidelberg
,
2009
), pp.
1422
1425
.
8.
D. B.
Olsen
, “
The history of continuous‐flow blood pumps
,”
Artif. Organs
24
(
6
),
401
404
(
2000
).
9.
A.
Prinzing
,
U.
Herold
,
A.
Berkefeld
,
M.
Krane
,
R.
Lange
, and
B.
Voss
, “
Left ventricular assist devices—Current state and perspectives
,”
J. Thorac. Dis.
8
(
8
),
E660
E666
(
2016
).
10.
M.
Behbahani
,
M.
Behr
,
M.
Hormes
,
U.
Steinseifer
,
D.
Arora
,
O.
Coronado
, and
M.
Pasquali
, “
A review of computational fluid dynamics analysis of blood pumps
,”
Eur. J. Appl. Math.
20
(
4
),
363
397
(
2009
).
11.
M.
Giersiepen
,
L. J.
Wurzinger
,
R.
Opitz
, and
H.
Reul
, “
Estimation of shear stress-related blood damage in heart valve prostheses—In vitro comparison of 25 aortic valves
,”
Int. J. Artif. Organs
13
(
5
),
300
306
(
1990
).
12.
T.
Zhang
,
M. E.
Taskin
,
H.-B.
Fang
,
A.
Pampori
,
R.
Jarvik
,
B. P.
Griffith
, and
Z. J.
Wu
, “
Study of flow-induced hemolysis using novel Couette-type blood-shearing devices
,”
Artif. Organs
35
(
12
),
1180
1186
(
2011
).
13.
L. B.
Leverett
,
J. D.
Hellums
,
C. P.
Alfrey
, and
E. C.
Lynch
, “
Red blood cell damage by shear stress
,”
Biophys. J.
12
(
3
),
257
273
(
1972
).
14.
D.
Arora
,
M.
Behr
, and
M.
Pasquali
, “
A tensor-based measure for estimating blood damage
,”
Artif. Organs
28
(
11
),
1002
1015
(
2004
).
15.
K. K.
Yeleswarapu
,
J. F.
Antaki
,
M. V.
Kameneva
, and
K. R.
Rajagopal
, “
A mathematical model for shear-induced hemolysis
,”
Artif. Organs
19
(
7
),
576
582
(
1995
).
16.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
, “
Systematic coarse-graining of spectrin-level red blood cell models
,”
Comput. Methods Appl. Mech. Eng.
199
(
29–32
),
1937
1948
(
2010
).
17.
D. A.
Fedosov
,
M.
Dao
,
G. E.
Karniadakis
, and
S.
Suresh
, “
Computational biorheology of human blood flow in health and disease
,”
Ann. Biomed. Eng.
42
(
2
),
368
387
(
2014
).
18.
T.
Ye
,
N.
Phan-Thien
,
C. T.
Lim
,
L.
Peng
, and
H.
Shi
, “
Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows
,”
Phys. Rev. E
95
(
6
),
063314
(
2017
).
19.
T.
Ye
,
N.
Phan-Thien
,
B. C.
Khoo
, and
C. T.
Lim
, “
Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow
,”
Phys. Fluids
26
(
11
),
111902
(
2014
).
20.
T.
Ye
and
L. N.
Peng
, “
Motion, deformation, and aggregation of multiple red blood cells in three-dimensional microvessel bifurcations
,”
Phys. Fluids
31
(
2
),
021903
(
2019
).
21.
K.
Koshiyama
and
S.
Wada
, “
Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching
,”
J. Biomech.
44
(
11
),
2053
2058
(
2011
).
22.
R. D.
Groot
and
K. L.
Rabone
, “
Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants
,”
Biophys. J.
81
(
2
),
725
736
(
2001
).
23.
C. B.
Wu
,
S.
Wang
,
X. J.
Qi
,
W. W.
Yan
, and
X. J.
Li
, “Quantitative prediction of elongation deformation and shape relaxation of a red blood cell under tensile and shear stresses,”
Phys. Fluids
33
(
11
),
111906
(
2021
).
24.
X.
Qi
,
S.
Wang
,
S.
Ma
,
K.
Han
, and
X.
Li
, “
Quantitative prediction of flow dynamics and mechanical retention of surface-altered red blood cells through a splenic slit
,”
Phys. Fluids
33
(
5
),
051902
(
2021
).
25.
S.
Sohrabi
and
Y.
Liu
, “
A cellular model of shear-induced hemolysis
,”
Artif. Organs
41
(
9
),
E80
E91
(
2017
).
26.
M.
Nikfar
,
M.
Razizadeh
,
R.
Paul
, and
Y.
Liu
, “
Multiscale modeling of hemolysis during microfiltration
,”
Microfluid. Nanofluid.
24
(
5
),
33
(
2020
).
27.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
, “
Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics
,”
Europhys. Lett.
19
,
155
(
1992
).
28.
P.
Español
and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
,
191
(
1995
).
29.
D. A.
Fedosov
,
B.
Caswell
, and
G. E.
Karniadakis
, “
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics
,”
Biophys. J.
98
(
10
),
2215
2225
(
2010
).
30.
F.
Vitale
,
J.
Nam
,
L.
Turchetti
,
M.
Behr
,
R.
Raphael
,
M. C.
Annesini
, and
M.
Pasquali
, “
A multiscale, biophysical model of flow-induced red blood cell damage
,”
AIChE J.
60
(
4
),
1509
1516
(
2014
).
31.
J.
Li
,
G.
Lykotrafitis
,
M.
Dao
, and
S.
Suresh
, “
Cytoskeletal dynamics of human erythrocyte
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
12
),
4937
4942
(
2007
).
32.
A.
Yazdani
,
Y.
Deng
,
H.
Li
,
E.
Javadi
,
Z.
Li
,
S.
Jamali
,
C.
Lin
,
J. D.
Humphrey
,
C. S.
Mantzoros
, and
G. E.
Karniadakis
, “
Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood
,”
J. R. Soc., Interface
18
(
175
),
20200834
(
2021
).
33.
K.
Reemtsma
and
O.
Creech
, “
Viscosity studies of blood, plasma, and plasma substitutes
,”
J. Thorac. Cardiovasc. Surg.
44
(
5
),
674
(
1962
). &
34.
R. E.
Wells
, Jr.
and
E. W.
Merrill
, “
Shear rate dependence of the viscosity of whole blood and plasma
,”
Science
133
(
3455
),
763
764
(
1961
).
35.
L.
Zhou
,
S.
Feng
,
H.
Liu
, and
J.
Chang
, “
Dissipative particle dynamics simulation of cell entry into a micro-channel
,”
Eng. Anal. Boundary Elem.
107
,
47
52
(
2019
).
36.
J. P.
Mills
,
L.
Qie
,
M.
Dao
,
C. T.
Lim
, and
S.
Suresh
, “
Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers
,”
Mech. Chem. Biosyst.
1
(
3
),
169
180
(
2004
).
37.
J.
Ding
,
S.
Niu
,
Z.
Chen
,
T.
Zhang
,
B. P.
Griffith
, and
Z. J.
Wu
, “
Shear-induced hemolysis: Species differences
,”
Artif. Organs
39
(
9
),
795
802
(
2015
).
38.
M.
Revenga
,
I.
Zúñiga
, and
P.
Español
, “
Boundary conditions in dissipative particle dynamics
,”
Comput. Phys. Commun.
121–122
,
309
311
(
1999
).
39.
Z.
Yun
,
C.
Xiang
, and
L.
Wang
, “
Research on human erythrocyte's threshold free energy for hemolysis and damage from coupling effect of shear and impact based on immersed boundary-lattice Boltzmann method
,”
Appl. Bionics Biomech.
2020
,
8874247
.
40.
J.
Dupire
,
M.
Socol
, and
A.
Viallat
, “
Full dynamics of a red blood cell in shear flow
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
51
),
20808
20813
(
2012
).
41.
S.
Bhattacharya
,
S.
DasGupta
, and
S.
Chakraborty
, “
Collective dynamics of red blood cells on an in vitro microfluidic platform
,”
Lab Chip
18
(
24
),
3939
3948
(
2018
).
42.
L.
Lanotte
,
J.
Mauer
,
S.
Mendez
,
D. A.
Fedosov
,
J.-M.
Fromental
,
V.
Claveria
,
F.
Nicoud
,
G.
Gompper
, and
M.
Abkarian
, “
Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
47
),
13289
13294
(
2016
).
You do not currently have access to this content.