The impeller is the core component of the centrifugal compressor. Aiming to solve problems related to a large mass, high-energy consumption, and large vibration of the existing centrifugal impeller, a semi-open supersonic centrifugal impeller provided by Krain et al. was redesigned in this paper. The redesign was based on Tsai–Wu failure theory and the two-way fluid–structure coupling method. First, the geometric and numerical models were established using the geometric data found in the literature. Then, the established geometric and numerical models were verified through experimental data. Finally, the impeller was optimized from three aspects: material lightweight, composite material layering, and tip clearance. The results have shown that following the optimization, the maximum impeller stress was reduced by 48.77% when compared to the traditional 17-4PH material impeller. The maximum vibration deformation was reduced by 60.4%, as well as the resonance probability. The pressure ratio was increased by 0.8%, and the pressure and velocity reverse gradient trend near the blade tip were significantly reduced, while the flow field was more stable. The research results presented in this paper hence provide a basis for the application of composite materials in centrifugal impellers.

1.
K.
Ekradi
and
A.
Madadi
, “
Performance improvement of a transonic centrifugal compressor impeller with splitter blade by three-dimensional optimization
,”
Energy
201
,
117582
(
2020
).
2.
Z.
Xu
,
Principle of Centrifugal Compressor
(
Xi'an Jiaotong University Press
,
2009
).
3.
D. K.
Liang
,
H. Q.
Yang
,
C.
Xu
,
Y.
Jiang
, and
Z.
Yi
, “
The recent progresses in industrial centrifugal compressor designs
,”
Int. J. Fluid Mech. Thermal Sci.
6
(
2
),
61
69
(
2020
).
4.
H.
Krain
, “
Review of the construction of the compressor's application and development
,”
J. Turbomach.
127
(
1
),
25
34
(
2005
).
5.
N. S.
Kota
, “
A review on application of composite materials to increase the efficiency of the centrifugal pumps
,”
Int. J. Eng. Trends Technol.
27
,
186
189
(
2015
).
6.
M. S.
Patil
, “
Composite wound axial turbomachinery impeller for green-renewable energy: Applications and numerical structural analysis
,” Ph.D. thesis (
Michigan State University
,
2014
).
7.
A. P.
Mouritz
,
E.
Gellert
,
P.
Burchill
, and
K.
Challis
, “
Review of advanced composite structures for naval ships and submarines
,”
Compos. Struct.
53
(
1
),
21
42
(
2001
).
8.
S.
Zhang
, “
Research on multidisciplinary lightweight optimization design method of tire fatigue impact aerodynamic performance
,” Master thesis (
Jilin University
,
2018
).
9.
T. F.
Azevedo
,
R. C.
Cardoso
,
P. R. T.
da Silva
,
A. S.
Silva
, and
S.
Griza
, “
Analysis of turbo rotor failure
,”
Eng. Fail. Anal.
63
,
12
20
(
2016
).
10.
S.
Draghici
,
G.
Jiga
,
S.
Vintila
,
R.
Mihalache
,
H. A.
Petrescu
, and
A.
Hadar
, “
Structural evaluation of a composite centrifugal rotor
,”
Sci. Bull. Nav. Acad.
XXIII
(
1
),
29
33
(
2020
).
11.
Y. H.
Liu
, “
Structure analysis of composite centrifugal pump impeller
,” Master thesis (
Hefei University of Technology
,
1988
).
12.
G. Z.
Wu
and
Y. H.
Liu
, “
Analytical method of short fiber reinforced semi-open centrifugal pump impeller
,”
Fiberglass Reinf. Plast./Compos.
6
,
19
23
(
1988
).
13.
Y. H.
Liu
and
G. Z.
Wu
, “
Strength analysis of composite centrifugal impeller
,”
J. Mech. Strength
14
(
4
),
32
37
(
1992
).
14.
S. M.
Nabi
and
N.
Ganesan
, “
Stress analysis of a composite centrifugal fan impeller using the cyclic symmetric approach
,”
Comput. Struct.
13
(
5
),
781
785
(
1993
).
15.
V.
Mallick
, “
Thermoplastic composite based processing technologies for high performance turbomachinery components
,”
Compos., Part A
32
(
8
),
1167
1173
(
2001
).
16.
M.
Sampathkumar
and
D. V.
Vijaykumar
, “
Static analysis of centrifugal blower using composite material
,”
Int. J. Eng. Sci.
3
(
9
),
25
31
(
2014
).
17.
K. U.
Kumar
,
N. V.
Reddy
, and
M. R.
Reddy
, “
Design and simulation of centrifugal pump using composite materials
,”
Int. J. Mag. Eng. Technol. Manage. Res.
3
(
10
),
985
992
(
2016
).
18.
I. H.
Carrillo
,
C. J.
Wood
, and
H.
Liu
, “
Advanced materials for the impeller in an ORC radial microturbine
,”
Energy Procedia
129
,
1047
1054
(
2017
).
19.
I. H.
Carrillo
,
C.
Wood
, and
H.
Liu
, “
Development of a 1000 W organic Rankine cycle micro-turbine-generator using polymeric structural materials and its performance test with compressed air
,”
Energy Convers. Manage.
190
,
105
120
(
2019
).
20.
M.
Polak
, “
Behaviour of 3D printed impellers in the performance tests of hydrodynamic pump
,” in
Proceedings of the 7th TAE,
2019
.
21.
K. R.
Kashyzadeh
,
S. A.
Kivi
, and
M.
Rynkovskaya
, “
Fatigue life assessment of unidirectional fibrous composite centrifugal compressor impeller blades based on FEA
,”
Mater. Plast.
53
(
4
),
623
625
(
2016
).
22.
L. D.
Prasad
,
D. D.
Singh
, and
B. S.
Babu
, “
Static and dynamic analysis of centrifugal blower using composite material
,”
IJLTEST
2
(
3
),
1
10
(
2018
).
23.
J. B.
Lin
,
Y. J.
Jin
,
Z.
Zhang
, and
X. C.
Cui
, “
Strength analysis of the carbon-fiber reinforced polymer impeller based on fluid solid coupling method
,”
Math. Probl. Eng.
2014
,
803261
.
24.
R.
Xiang
,
T.
Wang
,
Y. J.
Fang
,
H.
Xu
,
M.
Zhou
, and
X.
Zhang
, “
Effect of blade curve shape on the hydraulic performance and pressure pulsation of a pump as turbine
,”
Phys Fluids
34
,
085130
(
2022
).
25.
M.
Guo
,
C.
Liu
,
J. H.
Zhang
,
S. Y.
Liu
,
Z. F.
Ke
,
Q. D.
Yan
, and
B. C.
Khoo
, “
Parametric analysis of the effects of blade exit angle on the cavitation characteristics in a hydraulic torque converter
,”
Phys Fluids
34
(
5
),
053309
(
2022
).
26.
F.
Ravelet
,
A.
Chiffaudela
, and
F.
Daviaud
, “
Toward an experimental von Kármán dynamo: Numerical studies for an optimized design
,”
Phys Fluids
17
(
11
),
117104
(
2005
).
27.
Y. M.
Wang
,
L. F.
Tang
, and
X. J.
Qin
, “
Multi-objective optimization design of impeller of medium and low specific speed centrifugal pump
,”
J. Mech. Transm.
27
(
2
),
27
29
(
2003
).
28.
S.
Kim
,
Y. S.
Choi1
,
K. Y.
Lee1
, and
J. Y.
Yoon
, “
Design optimization of centrifugal pump impellers in a fixed meridional geometry using DOE
,”
Int. J. Fluid Mach. Syst.
2
(
2
),
172
178
(
2009
).
29.
H. L.
Wang
and
G.
Xi
, “
Research on multidisciplinary optimization design method of centrifugal compressor impeller
,”
J. Eng. Thermophys.
31
(
11
),
1835
1838
(
2010
).
30.
X. M.
Liu
and
W. B.
Zhang
, “
Multi-objective automatic optimization design of centrifugal impeller based on genetic algorithm
,”
J Xi'An Jiaotong Univ.
44
(
1
),
31
35
(
2010
).
31.
Y. B.
Tian
,
X. Y.
Qi
, and
J. X.
Hu
, “
Preferentialness design of a composite impeller with ultra-low unit speed concurrent pump
,”
Adv. Mater. Res.
308–310
,
2353
2357
(
2011
).
32.
J. H.
Kim
,
K. T.
Oh
,
K. B.
Pyun
,
C. K.
Kim
,
Y. S.
Choi
, and
J. Y.
Yoon
, “
Design optimization of a centrifugal pump impeller and volute using computational fluid dynamics
,”
IOP Conf. Ser.: Earth Environ. Sci.
15
(
1
),
032025
(
2012
).
33.
R. H.
Zhang
,
K.
Zheng
, and
J. H.
Yang
, “
Investigation on parametric design of centrifugal pump impeller and its optimization with response surface method
,” in
ASME Fluids Engineering Division Summer Meeting Collocated with the ASME Heat Transfer Summer, 8–12 July 2012
(
ASME
,
2012
).
34.
S. Q.
Yuan
,
W. J.
Wang
,
J.
Pei
,
J. F.
Zhang
, and
J. Y.
Mao
, “
Multi-objective optimization design of low specific revolution centrifugal pump
,”
CSAE
31
(
5
),
46
52
(
2015
).
35.
Y. Q.
Wang
and
X. W.
Huo
, “
Multiobjective optimization design and performance prediction of centrifugal pump based on orthogonal test
,”
Adv. Mater. Sci. Eng.
2018
,
6218178
.
36.
J. L.
Wang
,
J. G.
Yang
,
Y.
Liu
, and
T. H.
Zhang
, “
Multi-objective optimization design of centrifugal impeller
,”
Fan Technol.
61
(
2
),
26
31
(
2019
).
37.
M.
Namazizadeh
,
M. T.
Gevari
,
M.
Mojaddam
, and
M.
Vajdi
, “
Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment
,”
J. Appl. Fluid Mech.
13
(
1
),
89
101
(
2020
).
38.
J. T.
Zhao
,
W. J.
Wang
,
J.
Pei
,
J.
PYuan
, and
B. J.
You
, “
Parametric analysis and optimal design of high specific speed centrifugal impeller
,”
J. Harbin Inst. Technol.
54
(
7
),
45
52
(
2022
).
39.
K. K.
Aminjan
,
M.
Heidari
,
P.
Rahmanivahid
,
H.
Alipoor
, and
M.
Khashehchi
, “
Design and simulation of radial flow turbine impeller and investigation thermodynamic properties of flow in LE and TE
,”
Technol. Educ. Manage. Inf. J.
10
(
2
),
975
980
(
2021
).
40.
Z. C.
Zhang
,
H. X.
Chen
,
J. L.
Yin
,
Z.
Ma
,
Q.
Gu
,
J. Q.
Lu
, and
H.
Liu
, “
Unsteady flow characteristics in centrifugal pump based on proper orthogonal decomposition method
,”
Phys. Fluids
33
,
075122
(
2021
).
41.
Y.
Zeng
,
Z.
Yao
,
F.
Wang
,
R.
Xiao
, and
C. L.
He
, “
Experimental investigation on pressure fluctuation reduction in a double suction centrifugal pump: Influence of impeller stagger and blade geometry
,”
J. Fluids Eng.
142
(
4
),
041202
(
2020
).
42.
H. J.
Zhu
,
X.
Chu
,
Z. Y.
Yan
, and
Y.
Gao
, “
Coupling response of flow-induced oscillating cylinder with a pair of flow-induced rotating impellers
,”
Phys. Fluids
33
(
8
),
083608
(
2021
).
43.
J. N.
Reddy
, “
A simple higher-order for laminated composite plates
,”
J. Appl. Mech.
51
(
4
),
745
752
(
1984
).
44.
G. J.
Skoch
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,” in
ASME Turbo Expo, Collocated with the 2003 International Joint Power Generation Conference, Atlanta, GA, 16–19 June 2003
(
ASME
,
2003
).
45.
W. D.
Day
,
S. W.
Fiebiger
, and
H. N.
Patel
, “
Parametric evaluation of compressor blade blending
,” in
ASME Turbo Expo: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012
(
ASME
,
2012
).
46.
Z. H.
He
,
Y. Z.
Wang
, and
Y. S.
Wang
, “
Sound transmission tuned by active feedback control attached to elastic wave metamaterials immersed in water
,”
J. Appl. Mech.
88
,
071007
(
2021
).
47.
Z. H.
He
,
Y. Z.
Wang
, and
Y. S.
Wang
, “
Active feedback control of sound radiation in elastic wave metamaterials immersed in water with fluid-solid coupling
,”
Acta Mech. Sin.
37
,
803
825
(
2021
).
48.
Z. H.
He
,
Y. Z.
Wang
, and
Y. S.
Wang
, “
External mean flow on sound radiation of active mechanical metamaterials
,”
AIAA J.
58
,
4751
4763
(
2020
).
49.
Z. H.
He
,
Y. Z.
Wang
, and
Y. S.
Wang
, “
Active feedback control on sound radiation of elastic wave metamaterials
,”
AIAA J.
57
,
4536
4547
(
2019
).
50.
R.
Maier
,
S. V.
Silver
,
R.
Mihalache
,
V.
Vilag
,
M.
Sima
, and
V.
Dragan
, “
Decreasing the mass of turbomachinery subansamblies using advanced polymer composites
,”
Mater. Plast.
56
(
4
),
687
692
(
2019
).
51.
R.
Mihalache
,
I. S.
Vintila
,
M.
Deaconu
,
M.
Sima
,
I.
Malael
,
A.
Tudorache
, and
D.
Mihai
, “
Novel carbon fibre composite centrifugal impeller design, numerical analysis, manufacturing and experimental evaluations
,”
Polymers
13
(
19
),
3432
(
2021
).
52.
R.
Mihalache
,
I.
Fuiorea
,
I. F.
Popa
,
M.
Deaconu
, and
M.
Sima
, “
Numerical and experimental analyses regarding the Eigen frequencies of a centrifugal compressor made of composites
,”
U.P.B. Sci. Bull, Ser. D
83
(
4
),
83
95
(
2021
).
53.
H.
Krain
and
W.
Hoffman
, “
Verification of an impeller design by laser measurements and 3D-viscous flow calculations
,” in
ASME International Gas Turbine and Aeroengine Congress and Exposition, Toronto, ON, Canada, 4–8 June 1989
(
ASME
,
1989
).
54.
G.
Xi
, “
Discussion on the geometrical profile of the impeller in the Krain experiment and the vortex structure of the secondary flow in the flow channel
,”
J. Eng. Thermophys.
21
(
4
),
440
442
(
2000
).
55.
H. O.
Sun
,
A. Y.
Ren
,
Y. H.
Wang
,
M. F.
Zhang
, and
T.
Sun
, “
Deformation and vibration analysis of compressor rotor blades based on fluid-structure coupling
,”
Eng. Fail. Anal.
122
,
105216
(
2021
).
56.
Z. Q.
Lu
,
D. Y.
Li
, and
L.
Diviani
, “
Strength analysis of TSCB footbridge based on Tsai-Wu failure criterion
,”
J. Guangdong Univ. Technol.
31
(
1
),
101
106
(
2014
).
57.
J. S.
Mayes
and
A. C.
Hansen
, “
Composite laminate failure analysis using multicontinuum theory
,”
Compos. Sci. Technol.
64
(
3
),
379
394
(
2004
).
58.
S. W.
Tsai
and
E. M.
Wu
, “
A general theory of strength for anisotropic materials
,”
J. Compos. Mater.
5
(
1
),
58
80
(
1971
).
59.
J.
Kumar
and
F. H.
Wurm
, “
Bi-directional fluid–structure interaction for large deformation of layered composite propeller blades
,”
J. Fluid Sruct.
57
,
32
48
(
2015
).
60.
G.
Xi
,
H. J.
Zhao
, and
Z. H.
Wang
, “
Trailing edge filings and a modified Stodola's slip factor for centrifugal impeller
,” in
ASME Turbo Expo: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015
(
ASME
,
2015
).
61.
C.
Hah
and
H.
Krain
, “
Secondary flows and vortex motion in a high-efficiency backswept impeller at design and off-design conditions
,”
J. Turbomach.
112
(
1
),
7
13
(
1990
).
You do not currently have access to this content.